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CHAPTER 1
REPORT SUMMARY

1.1. Objective

The objective of this research and development work was to design and

specify a high performance, fault-tolerant spaceborne computer system

architecture which provides reliable, secure execution of critical Battle

Management algorithms. However, later in the program the effort was redirected

to the software tool de\ elopment.

During the course of this program, approximately 30 months, many

volumes of reports, and analysis dealing with the many aspects of diverse systems

requirements have been prepared and distribute to a limited number of

personnel. It is our intent in this final report to summarize the various technical

documents and to present one documentation set for the research/development

effort.

1.2. Report Organization

This report is to provide a summary of each assigned task. The detailed

technical work is reported in the subsequent volumes. They are listed as follows:

T. Feng and C. Wu, A Study of Some Multistage Interconnection Networks for

Multiple-Processor Systems

S. Pakzad and Y. Chang, Performance Analysis of Faulty Interconnection

Networks

P. Hulina and 0. Morean, New Architectural Approaches for High

Performance VLSI Processors

P. Hulina and 0. Morean, Architectural Approaches for High Performance

VLSI Processors



D. Landis, W. Check and D. Muha, VjL~I ilt-In Self-Test SuD22ort for the

Fault Tolerant Battle Management Comouting Environment

D. Landis and S. Raman, Classification and Evaluation of Built-In Self-Test

Technigues for Fault-Tolerant VLSI Systems

A. Hurson, Performance Evaluation of an Associative Parallel Join Module

A. Hurson, Su22orting Maybe Algebra in the Associative Search Language

Machine (ASLM)

A. Hurson, L. Miller and S. Pakzad, Enforcement of Integrity Constraints in

the Database Machine ASLM

A. Hurson, S. Pakzad and D. Shin, Extended ASLM* A Reconfigurable

Database Machine

A. Elmagarinid and D. Mannai, A Distributed Transaction Processing System

J. Metzner and E. Kapturo wski, Error Location Codes - Error Control

Through Comparison of Replicated Files*

C. Das and J. Kim, An Analytical Model for Computing Hvpercube

Availability

W. Lin, C. Das and T. Sheu, A Parallel Conjugate Gradient Algorithm with

Dynamic Communication Structures

W. Lin and T. Sheu, A Ouadtree Communication Structure for the Butterfly

Network

W. Lin and T. Sheu, A Parallel OR Algorithm with Ada~tive Communication

Structures

C. Das, W. Lin, M. Thazhuthaveetil and J. Kim, Reliability Evaluation of

Hypercube Systems
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W. Lin and C. Wang, Parallel Programming with Papa - A User's Guide

M. Thazhuthaveetil, A Butterfly Performance Predictor



CHAPTER 2

SOME RESULTS ON MULTISTAGE INTERCONNECTION NETWORKS

2.1. Introduction

Interconnection networks represent a consequent result of advances in

computer technology and requirements for higher system performance. For the

past three decades, computer systems evolved from 1960's batch processing models

to 1970's time sharing models. Basically, the evolution was confined within von

Neumann architectural model and hardware cost had been a limiting factor.

Recent advances in VLSI technology have caused significant changes on the

evolution. It is now economically feasible to construct a multiple-processor

computer system by interconnecting a large number of off-the-shelf processor

and memory modules. Furthermore, due to the higher performance requirements,

the number of functional modules (homogeneous or heterogeneous) in the

multiple-processor system would keep increasing as the domain of application

enlarges. The challenge originates from at least two facts. First, the processing

speed in the future can be significantly increased only by increasing the degree

of the concurrent processing as speds of computer devices reach a limit [1]. In

addition, some classes of problems such as very large data base management,

aerodynamic computation, etc., are beyond capabilities of current large computer

systems. Thus, multiple-processor systems with as many as 105 processing

elements have been proposed and constructed. However, conventional

interconnection organizations such as time-shared buses, crossbar switches, and

multiport memory schemes are not suitable for systems involving a large number

of modules. Our earlier work [2] describes general design philosophy of the

interconnection networks and then defines and investigates a class of multistage

interconnection networks for the architectures of large scale multiple-processor

systems. The significance of the work can be seen from not only the numerous

citations in research journals and conferences, but also major inclusion in

several books [3-5].

In this research we continue our previous work and achieve a number of

useful technical results as summarized below.

2.2. Classification of Interconnection Networks

4



With numerous interconnection networks proposed and implemented it is

important to have then divided into appropriate categories so that it is

possible to perceive the advantages and limitations of a given interconnection

network. We identify four dimensions of the space of interconnection networks:

operation mode, control strategy, switching methodology, and network topology.

The result of this classification is illustrated by Figure 2.1.

2.3. Shuffle-Exchange Networks

One of the major problems in designing multiple-processor systems for

concurrent processing is to design a cost-effective interconnection network.

The shuffle-exchange network has been shown to be a very good interconnection

network in some particular applications [6-11]. A shuffle-exchange network of

size N=2 4  is shown in Figure 2.2 in which the shuffle-exchange network is

composed of two permutation connection patterns. One connection pattern is the

perfect shuffle permutation and the other connection pattern is composed of N/2

2x2 switching elements each of which can have straight connection as shown in

Figure 2.3(a) and crossed connection as shown in Figure 2.3(b). The outputs of

switching elements are connected to the inputs of the perfect shuffle connection

pattern through intermediate registers.

The capability of realizing every arbitrary permutation with the shuffle-

exchange network, or the universality of the shuffle-exchange network, has

been investigated previously. On the basis of bitonic sorting, Stone [8] has shown
an algorithm for realizing every arbitrary permutation in 0(log2N) 2 passes and

Siegel [12] shows another in 2 (log2 N) 2 passes where N is network size. With an

additional mask facility, Lang and Stone [10,11] provides an upper bound of N

shuffle- exchange passes for the universality. If we consider a pass of above

schemes as a switching stage of N/2 2x2 switching elements, compared to Benes

binary network [13], these schemes involve many more passes than they should

since the Benes binary network can realize every arbitrary permutation and
needs only 2(log2N)-I switching stages. Our study achieves a solution to

realization of every arbitrary permutation in fewer shuffle-exchange passes. To

realize an arbitrary permutation, we not only specify the number of shuffle-

exchange passes needed, but also work out how to set the switching control for the

realization. In addition to the realizationscheme, we propose several universal

5
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shuffle-exchange networks in terms of the permutation properties thus obtained.

It is worthwhile to mention here that Parker [14] uses Pease's result [15] to

prove that omega network [9] can realize every arbitrary permutation in at
most three passes (or 3 log2N shuffle-exchange passes). Our work provides

further contributions to the development of interconnection networks in several

aspects. First, Parker uses the omega network as the basis since, as he claimed in

his paper [14], the behavior of the omega network is simpler to analyze than that

of bare shuffle-exchanges. Further improvement on Parker's work in terms of

the omega network will reduce the three omega passes to the two omega passes,

but not something between these two bounds (three and two omega passes). Our

research enables us to use the single stage (bare) shuffle-exchange network as

the basis and provide a bound of 3(log2N)-I shuffle-exchange passes which is the

best bound of the state-of-the-art. Parker just shows a theoretical bound without

specifying any control algorithm. Technically, given an arbitrary permutation,

Parker can not provide a switching control setting for the realization of this

permutation in three omega passes. We then provide a routing algorithm for our

new scheme. With this routing algorithm, we can specifically develop a
switching control setting to realize an arbitrarily given permutation in 3(log 2 N)-

1 shuffle-exchange passes. It should also be noted that our new scheme, along

with its routing algorithm, specifies the inherent relationship between two well-

known networks: the single stage shuffle-exchange network and the Benes

binary network. Finally, our shuffle- exchange permutation properties can be

used to demonstrate some optimized universal shuffle-exchange networks for

better interconnection purposes.

2.4. Generalized Baseline Networks

Many multistage interconnection networks have been proposed in

literature [9,16-25] to solve the intercommunication problem of multiple

processor systems. These include a baseline network [21] which uses 2 x 2

switching elements as its composite module. Our research extends this version to

a more flexible (and practical) one which allows the use of a more general t x r

switching elements, t, r > 1, as the composite module which allows connecting

more than one of idle outputs to an idle input, this broadcast capability can

enhance the efficiency of the distributed processing. The topology of the

9



extended version is generated in a recursive way. Figure 2.4 shows the first

iteration of the recursive process in which the first stage contains N/r versatile

crossbar modules and the second stage contains t sub-blocks. A number of

theorems are developed characterizing the extended baseline network to other

networks.

2.5. Matching Task Execution and Architecture

The problem of reconfiguring a distributed computing system for

enhancing the performance of executing computation tasks is important.

Architecturally, a distributed computing system can be constructed by

connecting off-the-shelf hardware components (processors and memories) with

an interconnection network. To execute a computation task, system programmers

have to develop a software system to partition the computation task into co-

operating processes and to assign the pieces to processors [26). However, the

concepts and techniques for partitioning and assignment are considered very
primitive [27]. It is even unclear what criteria should be used for general N-

processor partitioning and assignment [28]. In addition, the communication need

among the co-operating processes is now conceived at least to be as important as

the computation need [29]. So far, how to match the execution of the task and the

distributed processor communication architecture effectively is not well

understood. A software technique is demonstrated to effectively match the task

execution and the distributed architecture and consequently to enhance the

performance without changing the hardware organization.

The topology of the distributed computing system under consideration is
illustrated in Figure 2.5. In Figure 2.5, the P and M blocks represent the processor

and the memory, respectively, and the central block represents the full-access

interconnection network. The system topology shown in Figure 2.5 actually

reflects only the logical structure of the system. A memory can be physically

separated or associated with a processor. In either case, the memory and the

processor can then have different logical names. The full-access interconnection

network in the center plays a major role in the architecture. Its functionality not

only influences the interprocessor communication directly, but also affects the
way of processing tasks. Nowadays, people realize that conventional

interconnection schemes such as time-shared bus, multiport memory and

10
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crossbar switch become awkward in handling the intercommunication in large-

scale systems [16, 30]. There is a class of multistage interconnection networks

[21] which are potentially good for this intercommunication purpose. The

possible performance enhancement in using this class of interconnection

networks as the intercommunication vehicle is explored. Since the

interconnection networks in the class are topologically equivalent, we can use

the name of "baseline network" for discussion without losing generality. Figure

2.6 shows an example of the baseline network for N = 8 where N is the number of

input (or output) ports of the network. An input port is connected to an active

module such as the processor and an output port is connected to a passive module

such as the memory. Figure 2.6 also shows an identify feedback connection from

the intermediate output register to the input port. The feedback connection is for

a universal two-pass structure [31] which can realize every arbitrary

permutation in two passes.

We then address the communication complexity of our interconnection

network and a technique to reduce the communication complexity. As an example

of applying the theory developed in our work, we show an approach for

implementing parallel algorithms with the network configurations, and we make

a unified discussion on some frequently mentioned network configurations in

terms of some useful conflict-free permutations (Figure 2.7). We also show a

recursive external control scheme for those conflict-free permutations.

2.6. Routing Techniques

A number of routing techniques for rearrangeable interconnection

networks useful for parallel/distributed processing systems are investigated. In

a parallel/distributed processing system, an interconnection network is

favorably used to facilitate a mixed-mode operation of SIMD, multiple SIMD and

MIMD. In the SIMD environment, parallel algorithmic processes usually need

simultaneous one-to-one connections (or permutation) between processors. The

permutation connections are established synchronously. Many interconnection

networks have been proposed for permutation connections [21]. However, these

proposed interconnection networks can not realize every permutation in a single

pass. In the multiple SIMD environment, the interconnection network must be

partitioned so that each partition can serve the need of the SIMD permutations.

13
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Siegel [32] and associates have done useful work on the partition- of these

networks mentioned in [21]. Nevertheless, the size of each partition has to be

equal to a power of two. On the other hand, in the MIMD environment,

connection requests are likely to occur dynamically and asynchronously. In

regard to this stochastic property, we like to have an interconnection network

which can provide a connection path for every connection request no matter

what the current status of the interconnection network. A crossbar switch can

certainly fulfill these prescribed needs: one-pass realization of arbitrary

permutation, multiple SIMD machines of an arbitrary size, and the non-blocking

requirement for asynchronous requests. However, the cost of a crossbar switch

grows as N2 , where N is the number of input (or output) lines. Rearrangeable

networks [33] can also fulfill these needs for the mixed-mode operation and yet its

cost grows as N log N. But, one main issue concerning the use of the

rearrangeable networks is the limitation induced by backtracking routing

algorithms.

Many routing algorithms have been developed for the control of

rearrangeable networks. Opferman and Tsao-Wu [34] developed a looping

algorithm to control a class of rearrangeal.,e networ~s with 2 n input (or output)

lines (where n is an integer). Anderson (35] extended the looping algorithm for

the network with 2t.nt input lines (where t and nt are both integers). However,

Anderson's extension work requires a wor'W n7 memory of size (2t.nt) x (2 nt). To

control rearrangeable networks with an arbitrary size, Neiman [36], Ramanujam

[37], and Hall [38] provided different algorithms which are all backtracking in

nature. These routing algorithms need large working memory and require long

processing time for backtracking. In order to fulfill constraint of computer

systems, better routing techniques should be solicited. In addition to the lack of a

better routing technique, there appears to be no algorithm which takes the needs

of asynchronous routing into consideration.

In our report, we develop both synchronous and asynchronous routing

techniques for rearrangeable interconnection networks. We first present a

graph model to describe general routing for the rearrangeable interconnection

networks. Efficient implementations of the algorithms are illustrated and

discussed. We then use the same data structure derived from the graph model to

study strategies for asynchronous operations, and simulation models and the
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results of analysis are discussed. Finally, the graph routing is modified to adapt

full processor communication.

2.7. Conclusions

Four dimensions (operation mode, control strategy, switching methodology,

and network topology) are identified which constitute the space of

interconnection networks. The cross product of above four dimensions then

represents the space. Along this taxonomy, contemporary research works on

interconnection networks can easily be categorized.

For our work on shuffle-exchange networks it is concluded that every
arbitrary permutation can be realized in at most 3(log 2 N)-I shuffle-exchange

passes where N is the network size. A routing algorithm for this new scheme is

also provided. Three optimized networks in various forms to further reduce the

shuffle-exchange passes are proposed. In view of previous works on the shuffle-
exchange network, the present work specifically provides several contributions.
First, the new upper bound of 3(log2 N)-I shuffle-exchange passes for the

universality is better than other developments. Second, the routing algorithm is
good for realizing every arbitrary permutation in 3(log2N)-I passes while other

routing algorithms available most recently are developed for the realization of
(log 2 N) 2  shuffle-exchange passes. Third, this work specifies the inherent

relationship between the shuffle-exchange network and the Benes binary

network. Finally, three expanded universal networks which can provide better
interconnection schemes are demonstrated.

On the generalized baseline network, its relationships to other networks
proposed in other contemporary research efforts are studied. It is concluded that

the results obtained under different network names are mutually applicable. A
software technique is then demonstrated which can reduce the time delay in

realizing communication needs of a computation task without changing the

hardware organization. The software technique involves reconfiguring the
interconnection network so that the routing delay for the required

communication can be minimized. The reconfiguration mechanism can result in

a flexible architecture so that system programmers can have options to better

partition the computation task and assign pieces to processors and memories.
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Finally, a graph routing algorithm for the rearrangeable interconnection

network is presented. The algorithm can be implemented on a data structure

which uses small amounts of memory and is good for a network of arbitrary size

in contrast to other algorithms. Both synchronous and asynchronous routings

can be implemented on the same data structure. The algorithm provides good data

structure for implementation using associative memories, heuristical method to

degrade backtracking, and simulation of various asynchronous operations.

Several future researches are recommended as follows:

(1) Reliability. This issue receives inadequate support although it is one

of the most important aspects of interconnection networks.

(2) VLSI implementation. The necessity of the interconnection network

comes from advances of VLSI technology. Its implementation is a

logical step toward an efficient system realization.

(3) Establishment of evaluation metrics. The cost function must be defined

in order to have an objective comparison among various schemes.

(4) Stochastic simulation. There is relatively small amounts of research

activity on the stochastic behavior of interconnection networks.

Performance evaluation of various networks design decisions through

the stochastic simulation can provide useful information for

multiprocessing architecture.
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CHAPTER 3
PERFORMANCE ANALYSIS OF FAULTY

INTERCONNECTION NETWOR KS

3.1. Introduction

The interconnection network [4,5] is a major component of parallel

computer systems. This report focuses on the fault-tolerant interconnection

networks, the highly reliable connection networks between computer modules,

and investigates the design and analysis of fault-tolerant interconnection

networks.

We can define a fault-tolerant interconnection network as follows: A fault-

tolerant interconnection network is a network that can tolerate faults of some

degrees and still provide reliable connections between input-output terminal

pairs.

Even though the fault-tolerant characteristics are important for the

interconnection networks, not enough attention has been given to the networks

in general. The design of fault-tolerant interconnection network involves the

finding of effective methods that will allow the network to operate properly in
the presence of some faults.

The report is organized as follows: In section 3.2, we will introduce several

techniques to achieve fault-tolerant interconnection network design. In section
3.3, we will describe major problems which we have identified in fault-tolerant

interconnection area as the results of our literature survey. In section 3.4, we

will propose a comprehensive interconnection network design which includes

network architecture, fault diagnosis method, control strategy, and performance

evaluation. In section 3.5, we will summarize overall result of our research and

propose directions in future works.

3.2. Survey of Fault-Tolerance Techniques in
Interconnection Networks Design

To make interconnection network fault-tolerant, several techniques have
been proposed. This chapter focuses on several major techniques to achieve

fault-tolerance.
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3.2.1. Techniques to Achieve Fault-Tolerance

In the past, several multistage interconnection network (MIN) with fault-

tolerant characteristics have been proposed. The examples of such designs are

the extra stage cube network, the chained multistage interconnection network

and the interconnection network using error-correcting codes, etc. Here we can

identify four major ways to achieve fault-tolerant multistage interconnection

networks:

First, utilizing multiple alternative paths between an input-output pair

bf the MIN. We can either modify existing network topology [1,91 to obtain

redundant paths or derive new topology that can be reconfigured to avoid faults

with little degradation of performance.

Second, using multiple-pass routing scheme. We can implement a feedback

loop between input-output terminal [8] and route data several times through

feedback loop.

Third, adapting the fault-tolerant switching elements and control units to

construct fault-tolerant multistage interconnection network.

Fourth, using self-checking and correcting code for the data transmitted

through the network. We can use error correcting codes that can correct the

errors due to failure of switching elements and connecting links.

With these techniques, it is easy to understand that the fault-tolerance

characteristics can not be separated from interconnection network

characteristics, since once an interconnection network is constructed, the fault-

tolerant characteristics can not be changed greatly.

3.3. Problems in Fault-Tolerant Interconnection Networks Design

The background survey of this report has attempted to identify the

problem, and develop the basis for fault-tolerant interconnection networks. As a

consequence of this survey, we discovered the problems and untouched issues in

previous researches. Those issues are summarized below.

* Analyzed with emphasis only on theoretical characteristics such as

fault-tolerant parameter and network isolation due to fault. Therefore

24



the problems such as how the network can be controlled with faulty

elements are not solved.

" Designed networks have either extra stages or extra links between

switching elements. As a result they create resource under utilization

problem for the valuable resources like switching elements and links,

since these extra hardware will sit idle during normal fault-free

operation time.

" Introduced irregular elements for the network such as limited 3 x 3

switching element and special types of data manipulating device, which

might create implementation problems.

" Most of the design can only handle single fault problem does not

provide general multiple faults coverage.

* Control algorithms of proposed networks are not regular and frequently

requires time consuming operations like alternative path inspection.

These inefficient control schemes will degrade the network

performance greatly.

Therefore we are now proposing a comprehensive design of a fault-

tolerant interconnection network which includes network architecture, fault

diagnosis, and control strategy. Some of the merit of our design are:

* Since no extra switching hardware are involved, the resource

utilization will be very high. Also normal fault-free operation of our

network does not create any overhead in hardware and software

control.

* New proposed routing algorithm can handle both fault-free network

and network with faulty elements with regular fashion.

* Our design can handle general multiple faults in the network, where

other designs only can handle a single fault and very limited multiple

faults problem.

3.4. A Fault-Tolerant Interconnection Network

3.4.1. A Network Architecture
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The network architecture described in this chapter is based on the baseline

networks. Baseline networks are a class of unique-path networks, which provide

exactly one path for every pair of the input and output terminals (full access

network). Since the unique-path networks are a minimal network which still

provides the full access property, a fault in the network will prevent some

connections from being established.

By adding a feedback loop between output terminals and input terminals, a

unique-path network can tolerate a number of faults. This feedback loop already

exists in many multicomputer systems. Even if it does not exist, the extra

hardware needed to the system is negligible compare to other designs which

usually added either extra stages or links. The feedback loop interconnection

network architecture has been proposed and investigated in several previous

works [8]. But most of the previous works only deals with characteristics of the

network and the problem of controlling the network such as routing data in

faulty network is yet to )-e addressed.

The fault mu%,c" [6,7] discussed in this paper is the switching element stuck-

at-fault type. .-, switching element can be stuck-at either Through or Cross

mode. Therefore, a faulty switching element has lost its 'switching' capability,

and can only pass messages in a fixed pattern.

3.4.2 . A Routing Algorithm For Faulty Interconnection Network

In this section, we will introduce problems of conventional destination tag

routing algorithm when it is applied to control faulty interconnection networks,

and then propose a new routing scheme which can control faulty

interconnection network as well as fault-free networks.

Since the possible variations of multiple faults pattern is almost infinite,

finding efficient take-care-everything control scheme is almost impossible.

Therefore we approach the problem with two step strategy. First, we employ a

heuristic approach to control the network by observing the network activity.

Second, we employ a deterministic approach to insure every input-output

connection requirements are established. In the first step, we control the

network according to the output observation and detected faults by several

heuristic rules. Since the first step may not take care of all the cases, the second

step is designed for the unsolved cases. In the second step, an intermediate
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terminal, through which the source/destination connection can be established,

will be found. Then the messages will be routed through the intermediate

terminals. The cost of the deterministic approach is higher compare to the

heuristic approach, since the former approach requires more processing time.

But from the simulation of actual network operation with faulty elements, we

found out only small portion of the test cases requires the second step and most of

the time the first step is sufficient.

3.4.2.1. Problems of Conventional Routing Algorithm
For Faulty Interconnection Networks

Two problems are identified when the original destination tag algorithm is

applied to faulty networks: The fault propagation problem and the infinite

loop problem.

The fault propagation problem is so named because a fault in one switching

element may appear to propagate through other switching elements in the

network. If a message encountering a faulty switching element is misrouted,

then conflicts may arise along its misrouted path. The misrouted, then conflicts

may arise along its misrouted path. The misrouted message may collide with other

messages trying to use switching elements along this path. Therefore, a greater

number of problems may arise than we would expect from a single faulty

switching element.

The infinite loop problem arises using the original destination tag

algorithm when a group of messages cannot reach their destinations. In an

infinite loop situation, the terminals which the unsuccessful messages can reach

form a group. However, the intended destinations lie outside this group, and

additional re-routing can not help. Consequently, these messages can never be

successfully delivered.

3.4.2.2. Proposed Routing Algorithm

As previously stated, the first step of our routing algorithm for faulty

networks, is based on the destination tag algorithm for fault-free networks. We

have made three modifications to directly address the fault propagation and

infinite loop problems.
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First, whenever two messages meet and create a conflict at a faulty

switching element, they will exchange their destination tags. As a result,

although these two messages will not reach their correct destinations, they will

not stray into the paths of any additional messages. Therefore, only the original

two messages are affected by the fault, and the fault propagation problem is

eliminated.

Second, we have found that the infinite loop problem mainly occurs when

a misrouted message reaches an incorrect destination which belongs to a

switching element, in the same row as the source. To avoid an infinite loop, our

algorithm re-routes this message to another part of the network for the next pass.

Re-routing is accomplished by complementing the two leftmost bits of a message's

destination tag. The logic behind this procedure is to send the message away from

the faulty part of the network which appears to be the cause of the infinite loop

problem. Since the two leftmost bits partition the network into quarters,

complementing these bits will route the message to a different quarter of the

network. For a single fault network, then, the message is re-routed to a fault-free

portion of the network, and delivery to the correct destination is assured with one

more pass. For a multiple fault network, the message is re-routed to a portion of

the network with potentially fewer faults. Therefore, the probability of reaching

the correct destination in the next pass is quite high.

However, occasionally, the proposed procedure does not eliminate the

infinite loop problem for multiple fault networks. Hence, an algorithm was

designed to handle these rare occasions. The possibility of an infinite loop can be

detected when a pass through the network does not reduce the number of

undelivered messages. When such a condition is detected, our algorithm finds an

appropriate intermediate terminal for each undelivered message. By re-routing

the message through this terminal, the destination can now be reached. The

algorithm for selecting the appropriate intermediate terminal is discussed tin the

next section.

3.4.2.3. Intermediate Terminal Selection Algorithm

In this section we will describe the second step of our proposed routing

algorithm.
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Whenever a pass through the network does not reduce the number of

undelivered messages there is a potential infinite loop problem. When such a

condition exists, we choose a new route for each undelivered message by selecting

an intermediate terminal through which it can be successfully delivered.

For a given fault status (location and type of faulty switching elements)

and a given/source/destination pair this selection process has three phases:

1. Determination of all possible reachable destination terminals from the

given source terminal.

2. Determination of all possible source terminals for the given destination

terminal.

3. Intersection of these two sets to determine the set of appropriate

intermediate terminals.

Since we may have several sets of source/destination pair, we need one more

phase when there are more than one source/destination pairs which needs the

intermediate terminal selection scheme. The fourth phase is:

4. Pick a compatible intermediate terminal for each source/destination

pair which will not create conflicts with any other messages.

We call this overall process the Intermediate Terminal Selection Algorithm.

The first phase determines the set of destination terminals which are reachable

from the source terminal. The general approach is to build a binary (trace) tree

with the source terminal as the root node and the reachable destinations as the

leaf nodes. We call this phase the Forward Trace Algorithm. The trace algorithm

is based on the connection topology of the network. In the case of fault-free

baseline network, the subroutine generate-switch-set-for-next-stage constructs a

binary trace tree for the given source terminal. For faulty network, the trace

algorithm splits the trace tree after the detection of each faulty switching

element. The details for the forward trace will be in the final report.

The second phase of the trace algorithm determines the set of source

terminals which can reach the required destination terminal. The approach here

is to build a binary (trace) tree with the destination terminal as the root node and

possible source terminals as the leaf nodes. This algorithm, called the Backward
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Trace Algorithm, is simply the reverse baseline network. Therefore, the

subroutines for generating the switch descriptor set for the next stage and

splitting the faulty node should be adjusted for the new topology. For space

considerations, then, this algorithm will not be described here.

The third phase of the trace algorithm determines the set of intermediate

terminals through which a message can pass if its original path is blocked by a

faulty switching element. This set of terminals is simply the intersection of the

terminal descriptor sets from the first two phases. And the possible intermediate

terminal is any one of the intermediate terminal set. When there is only one

source/destination pair, the intermediate terminal can be indeed any terminal in

the set. But for the case of multiple source/destination terminals, we need to pick

a terminal for each pair which does not create any conflict with the other

messages.

When there are several source/destination terminals which need

intermediate terminal, we will need one more step to find the compatible

intermediate terminals among the sets of possible intermediate terminals. We

have developed heuristic rules which will reduce the change of the conflict

between the messages. Those rules are:

First, pick a terminal from the smallest terminal descriptor in the backward

trace tree which is also in intermediate terminal set. This rule force the message

pass through the faulty switching elements. Since the message pass through

more clearly defined passage by the faulty switching elements, there is less

possibility of creating a new conflict with other messages. Second, for remaining

sets of source/destination pairs, pick a terminal descriptor far from already

picked terminal descriptors. This second rule is for separating the messages from

each other. Therefore there will be less chance of a conflict. Third, repeat

second rule, until all the intermediate terminals for each source/destination pair

are found.

3.4.3 . A Fault Diagnosis Method For Interconnection Network

This section describes a fault diagnosis method which detects and located

the faulty elements in the network. The network routing algorithm described in

the previous section will utilize the fault information obtained by the fault

diagnosis scheme explained below. Our fault diagnosis method is a combination of
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hardware and software diagnosis method. We will explain the hardware diagnosis

part first, and will describe the software part later.

A simple technique has been developed based on fault model and routing

scheme. Our fault model are the switching element stuck-at fault, where the

switching elements can be stuck at either through setting or cross setting. So the

faulty switching element will be set at one of the setting and con not be changed

by the control signal. Our scheme is based on the destination tag of the messages

which pass through the 2 x 2 switching element in each stage.

A fault detection logic circuit, which is described in detail in the final

report, in each switching element will detect the fault and identify the type of the

fault, then generate fault signal and fault type signal. These fault signals for

each switching element will be fed into the inputs of fault controller of the

network partition which is composed of a simple logic circuit such as a multi-

input OR gate and sequential logic. The function of network partition is defined

as a group of switching elements which are closely related in the network

topology and control method. Since integrated circuit (IC) chip building

technology limit the number of switching element can be put inside a single

chip, it is natural to make a network partition which can be fit in a single chip.

By having one network partition fault controller in each chip, we could save the

valuable resource, the outside connection pins which is one of the major

problems of current IC technology.

For the software diagnosis part of our fault diagnosis method, one of our

previously proposed method [2] can be used. The essence of these types of fault

diagnosis method is applying the input test vector which will create

distinguishable output patterns when some faulty elements are present. Since we

assumed two valid states for the switching element, we need at least two steps to

test the network. The major improvement over the previously proposed fault

diagnosis method is the activation time of the fault diagnosis routine. A major

problem of pure software fault diagnosis techniques [1,3], either off-line or on-

line technique, is the activation time of fault diagnosis. It is almost impossible to

find a optimal timing for each fault diagnosis. To solve this problem, we propose

to combine the software and the hardware diagnosis techniques. The software

routine will be activated only if the master controller informs a new fault has

been detected.
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In summary, we feel that our fault diagnosis method is quite an

improvement over the previously developed methods. Also it seems our design is

flexible enough with current IC technology.

3.4.4. Performance Analysis of Faulty Interconnection Network

The performance measure we have used here is based on the

communication delay. The co-nmunication delay, which represents the total delay

time for realizing every source/destination connection (permutation)

requirements, is used as the measure of the performance of the networks. Since

our network is multistage interconnection network with feedback loop between

destination and source terminals, the number of passes requires to realize a

source/destination permutation will be used as our performance measure.

Because the variations of the multiple fault patterns are almost unlimited,

we have employed a simulation technique to collect statistical data for our

analysis. We are simulating the baseline networks with four different sizes,
which are 16 X 16, 32 X 32, 64 X 64, and 128 X 128 baseline networks. The number of

fault we are testing are up to (but not included) the minimal critical fault. For

example, for 64 X 64 baseline networks, we are testing faults number starting

from one fault up to five faults. For each test case (a chosen network size and

number of faults) we are testing several thousand different test data to gather the

statistical data. Our partial results of the simulation have been very encouraging.

Our design yields graceful performance degradation in the presence of network

faults. For every network size we tested, on average, less than two passes are

required for a single fault network. Even with the number of fault is increased

up to the minimal critical fault, the number of passes required is about 3.5 to

realized a source/destination permutations. For example, the 128 X 128 baseline

networks with six faulty switching elements only required average 3.5 passes to

establish all the source/destination connections. The detailed results of our

simulation will be shown in the final report.

3.5. Summary and Directions

In this chapter, we will summarize this report and propose the directions

for the future works.

32



First, we have described major problems which we identified in fault-

tolerant interconnection are as the results of our literature survey. Second, we

have proposed a comprehensive interconnection network design which includes

a network architecture, fault diagnosis method and control scheme of the network

and our design is readily applicable for many real world applications. In our

design, the network can tolerate multiple number of faults which is up to the

minimal critical fault. If number of faults is more than minimal critical faults,

the network will be divided into multiple isolate parts and no routing method can

connect the terminals belongs to different group. We have designed a network

routing algorithm which is applicable to not only fault-free networks but also

faulty networks. Finally, we analyzed the performance of our design in various

faulty conditions by simulating the faulty networks.

Now we can propose the directions for the future works. First, the fault

diagnosis method we proposed here can be improved further. To optimize in time,

a pure on-line fault diagnosis method is the most desirable, but it requires more

hardware and a large number of control lines (i.e. IC pins). Also the

implementation might not be practical. To optimize in space, a pure off-line test

is the most desirable without any needs of extra control lines, but this method will

severely degrade system performance by delaying network operation. Therefore

we developed a combined method which is combination of the pure on-line and

pure off-line methods. But we believe this combined diagnosis method still can be

improved for the best performance with more investigations of current chip

technology.

Second, we believe the proposed routing algorithm still can be improved

with the help of our network simulator. For example, some decision points such as

the activation point of intermediate algorithm can be modified for better

performance.

Third, the interconnection network simulator which we have developed

has several segments to accomodate various needs. Since our primary use of the

simulator is to gather statistical data for our research, some parts of the simulator

still need to be modified for the general purpose user-friendly interconnection

network simulator.

Fourth, we suggest that the extension of fault model might provide a good

future research work. But since we are dealing with multiple faults

environments, it might not be a manageable research task, if you over extend the
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fault model. Therefore we suggest that either by limiting the number of faults or

considering only few valid faulty states might be a good first approach. Since the

nature of this extension is beyond the scope of this report, the investigations for

this research will be with the current fault model.
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CHAPTER 4.

HIGH PERFORMANCE VLSI PROCESSOR ARCHITECTURES

4.1. Introduction

Computers have a widespread range of applications in our modem society.

High performance computation is required for the solution of the complex

problems given in Table 4.1. To cope with these demands technological advances

have provided increases in device speed and reliability as well as reductions in

hardware cost and physical size. As a consequence of these improvements, it is

actually possible to build powerful processors in a single integrated circuit. In

spite of this progress, processing speed has not increased sufficiently to solve the

complex problems given in Table 4.1. To cope with these demands technological

advances have provided increases in device speed and reliability, as well as

reductions in hardware cost and physical size. As a consequence of these

improvements, it is actually possible to build powerful processors in a single

integrated circuit. In spite of this progress, processing speed has not increased

sufficiently to solve the complex problems of Table 4.1 in a reasonable time.

Therefore, additional improvements must be based on advanced computer

architectures and processing techniques.

Advanced computer architectures are centered around the concept of

parallel processing. A broad classification of these architectures include

pipelined computers, array processors, and multiprocessor systems. Some

examples of parallel computer systems are given in Table 4.2. The advent of VLSI

has made possible the implementation of multiprocessors in a single chip, and it

has been predicted that VLSI devices with millions of gates will be available

within the next decade [1,2]. Extensive research is actually carried out to define

multiprocessor architectures that capitalize on the high density of VLSI chips. It

is a well accepted fact that the performance of a multiprocessor is highly

dependent not only on the structure of the system as a whole, but also on the

performance of the individual system components such as processors and

interconnection networks. The objective of this research is to determine novel

VLSI functional processor architectures which can provide high performance in

dynamic environments, and make optimum use of the increased density of new

VLSI devices.
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Table 4.1

High Performance Computer Applications

Predictive Modelling and Simulations

1) Numerical Weather Forecasting
2) Oceanography and Astrophysics

a) Climate predictive analysis
b) Fishery management
c) Ocean resource exploration
d) Coastal dynamics and tides

d) Socioeconomics and Government use
a) Socioeconomic models
b) Crime control

Engineering

1) Finite Element Analysis
2) Computational Aerodynamics
3) Artificial Intelligence and Automation
4) Remote Sensing Applications

Energy Resources Exploration

1) Seismic Exploration
2) Reservoir Modeling
3) Plasma Fusion Power
4) Nuclear Reactor Safety

Medical, Military, Basic Research

1) Computer Assisted Tomography (CAT)
2) Genetic Engineering
3) Weapon Research and Defense

a) Multiwarhead nuclear weapon design (Cray 1)
b) Simulation of atomic weapon effects by solving

hydrodynamics radiation problems (Cyber-205)
c) Intelligence gathering, such as radar signal

processing on the associative processor for the
antiballistic missile program (PEPE)

37



Table 4.2

Examples of High Performance Computers

Array Processors

Bit-S lice Word-Slice

Staran ILLIAC IV
MPP PEPE
DAP

Pipelined Computers

Vector Supercomputers Attached Processors

IBM 360/91 AP-120B (FPS-164)
CDC 6000/7000 series IBM 3838
STAR 100 MATP
TI-ASC
CRAY-1
CYBER-205
VP-200

Multiprocessor Systems

C.mmp, Cm* (Carnegie-Mellon University)
S-1 system (Lawrence Livermore National Lab)
CDC Cyber-170
Honeywell 60/66
DEC System 10
IBM 370/168
IBM 3081
CRAY X-MP
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First some well known classifications of computer systems are reviewed in

order to obtain a better understanding of the architectural features affecting

performance. Then the fundamental computational models, on which the

development of new architectures is based, are presented. The selection of the

computational model is a crucial step in the design of a computer system. The

limitations of the use of parallelism and concurrency in general purpose

computer systems is discussed. Particular emphasis is given to those architectural

features which improve scalar performance and consequently reduce the

imbalance generally found between the high-speed (parallel) and low-speed

(serial) modes of operation of a computer system. We then deal with the access

overhead associated with a computational task. An increase in computer

performance can be obtained by reduction of this overhead. Two architectural

approaches that can achieve high-performance by reducing the access overhead

are presented: the systolic and the CPU-MRU (memory reconfiguring unit)

architectures. An architectural design style which departs from the

conventional von Neumann approach is presented: the decoupled access/execute

architecture. This approach achieves performance through concurrency of

operation of the access and execute processes associated with a computational task.
The two main design styles for VLSI uniprocessors, RISC and CISC machine are

analyzed, with the objective of determining those architectural features that lead

to high performance. Finally, a new architectural design style, the Dynamically

Alterable Access Primitive Architecture (DALAP) is presented. Particular

emphasis is given to the design criteria and motivations for the architecture.

4.2. Dynamically Alterable Access Primitive (DALAP)
Architecture

Proponents of Reduced Instruction Set Computer (RISC) machines

generally argue that Complex Instruction Set Computer (CISC) architectures

execute code inefficiently mainly because only a subset of the instruction set is

used in most applications, and the overhead due to the implementation of complex

instructions reduces the performance of the machine as a whole. RISC

philosophy advocates the implementation of the most frequently used

instructions in hardware, relying on software routines for the execution of the

most complex ones. However, important changes in pror:ssor architecture and

software development have to take place in order to support the RISC design style.
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Among the most important ones we can mention: 1) hardware implementation of

the processor control unit; 2) efficient register allocation; 3) extensive use of

local memory; 4) efficient pipeline scheduling; and 5) use of optimizing

compilers.

In this work it is contended that RISC design style is just one of the possible

alternative design styles that can be adopted in order to obtain high performance

in VLSI processors. In fact, RISC And CISC architectures represent the extremes

of a multidimensional design space characterized by limited resources (real

estate).

A new architectural design style is proposed: the Dynamically Alterable

Access Primitive (DALAP) architecture. The design style is intended to satisfy the

following criteria:

1) Advances in VLSI technology offer the possibility of manufacturing

highly dense devices (in the order of millions of transistors). Efficient

use of these resources (real estate) is crucial in the attainment of high

performance for newly developed architectures.

2) Memory management functions in current large-scale computations

require considerable processor time. Increases in processor

performance can be achieved by reducing the access overhead and by

obtaining concurrency in the access/execute processes associated with

a computation task.

3) Adaptability of the architecture to match the characteristics of the

algorithm being implemented is a necessary requirement to be satisfied

by a processor intended to work in a dynamic environment.

The DALAP architecture represents a generalization of the CPU-MRU

concept introduced in previous sections. The MRU can be implemented as part of

the memory integrated circuit, as shown in Figure 4.1, or as part of a VLSI

processor, as illustrated in Figure 4.2.

The MRU-memory alternative of Figure 4.1 can be described as an

intelligent memory, i.e. a memory device with processing capabilities mainly

oriented to data management operations. The intelligent memory configuration

offers the following advantages:
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Figure 4.. Intelligent Memory (MIRU-Memoryv) Configuration

......................

Figure 4.2. CPU-MRU Configuration
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1) Distributed processing. Several intelligent memories attached to a

single CPU can simultaneously carry out the management of the

different data structures handled by a computation task.

2) Concurrent access/execute operation. The PU can be processing data

while the intelligent memories are either retrieving new data or

storing partial or final results in memory. This also alleviates the

adverse effects of the Flynn's limit.

3) Efficient use of the increased density offered by VLSI technology.

4) Execution of address sequences calculations on chip reduces the adverse

effects of the limited CPU memory bandwidth (von Neumann

bottleneck).

The main disadvantage of the intelligent memory approach is that status

information, required for the coordinated operation of the CPU and the intelligent

memories, has to contend with instructions and data for the available CPU-

memory bandwidth. This side effect can drastically reduce performance in a

dynamic environment.

A Block diagram of the DALAP architecture is given in Figure 4.3. The

architecture consists of two main components: an execute processor (EP),

dedicated to data manipulation operations, and an access processor (AP), for data

management.

The instruction set of the EP is restricted to operate on data held in

registers Do through Din. EP also have read/write access on the registers of the

access processor. No addressing modes are associated with the EP instruction set.

Consequently, the EP can be considered as a load/store architecture. The absence

of complex addressing modes simplifies the EP instruction repertoire considerably

allowing the implementation in hardware of its control unit.

The access processor in the DALAP architecture of Figure 4.3 includes four

sets of registers:

Mode registers {M0 .... MNI

Base registers {B0 .... BN}

Relative displacement registers {R0 .... RN I
Value registers (V0 .... VNI
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At this point, it is important to emphasize that the block diagram of Figure 3

describes an emerging architectural concept. Consequently, changes in its

architectural features might occur as a result of future research. For example,

new sets of registers could be added to the AP, or the existing ones could adopt

different functions. The DALAP architecture of Figure 4.3 is used just as a vehicle

to illustrate the main ideas supporting the new design style.

4.3. Advantages of the DALAP Architecture

The DALAP design style lies on the multidimensional design space flanked

by the RISC and CISC approaches. Indeed, it reflects characteristics of these two

architectural design styles. The execute processor resembles, to a certain extent, a

RISC machine. Though the accessing primitives implemented in the access

processor, the system is endowed with powerful addressing modes, which

generally characterize a CISC processor. Due to the decoupling of the access and

execute mechanisms, and the implementation in hardware of the addressing

primitives, the access overhead normally associated with a computation task is

reduced considerably. In addition, by alteration of the addressing primitives

characterizing the access processor, the system can be tuned to the application.

Finally, the DALAP design style illustrates an attempt to make efficient use of the

additional resources (real estate) offered by the advances in VLSI Technology.

All these characteristics lead us to believe that the DALAP architecture can

offer high performance in dynamic computational environments.

4.4. Conclusions

Advances in VLSI technology have caused dramatic improvements in the

performance of computer systems. Increases of performance beyond the limits

imposed by technology can be achieved through the use of concurrency and/or

parallelism in the design of the underlying architectures. A reconfigurable

multiprocessor is an ideal candidate for large-scale computations in dynamic

environments. Reconfigurability allows the system to be adapted to the

application so that high performance is maintained throughout the spectrum of

algorithms being implemented in the computer system. The availability of

multiple processors offers the possibility of achieving fault tolerance and
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graceful degradation. These characteristics are required for the solution of battle

management algorithms in spaceborne computer systems.

Every computer system endowed with parallel processing capabilities

exhibits a high-speed and a low-speed modes of operation. The high-speed mode is

active whenever the computation task can be optimally distributed among the

processing elements. However, those parts of the algorithm being implemented

that do not exhibit parallelism can force the machine to behave as a single
processor. Under these circumstances the machine is said to be operating in the

low-speed mode. To obtain high performance the system must operate efficiently

in both modes. Therefore, the design of the individual processors becomes as

important as the design of the architecture of the whole system. This fact is

supported by ample experimental evidence obtained the analysis of many

computer systems with parallel processing capabilities, and it is known in the
literature as Amdhal's law. As a direct consequence, research on high

performance VLSI uniprocessors becomes a crucial step in the design of high

performance multiprocessors.

The von Neumann's bottleneck and the Flynn's are two main limitations

hindering performance in VLSI uniprocessors. Special purpose devices, as for
example systolic and wavefront processors, have been proposed to alleviate the

aforementioned limitations. The special purpose architectures offer high
performance for very specific applications. They are commonly used as

peripheral processors attached to general purpose computers. For large-scale
computations in dynamic environments, architectures which can offer sustained
high performance for wide class uf applications are highly desirable. Current

architectural design styles that take advantage of the increased density offered by
VLSI technology are: complex instruction set computers (CISC) and reduced

instruction set computers (RISC). RISC and CISC machines are at the extrema of a
multidimensional design space with limited resources (real estate). An analysis of
the RISC-CISC controversy is carried out in order to determine those architectural

features that can lead to high performance in a dynamic computation

environment. Particular emphasis is given to the architectural support for
memory management functions. Most large-scale computer applications are

developed using high level procedural languages and operate on data structures.
Experimental evidence has revealed that a considerable amount of processing

time is devoted to the generation of the address sequences aimed at reducing the
access overhead of computation tasks, based on the concept of memory
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reconfiguration unit (MRU), is presented. The MRU can be implemented as part

of a VLSI Memory chip. This leads to the concept of intelligent memory which
offers the advantages of distributed processing and concurrent access/execute

operation. However, the flow of status information required for the efficient
interlock between the CPU and the intelligent memory system has to compete for
the limited CPU-memory bandwidth (von Neumann bottleneck). This can cause
dramatic losses of performance. A better alternative relies on considering the

implementation of the MRU as part of the VLSI processor. This scheme allows
concurrency in the access and execute processes and handling of status

information inside the chip. A generalization of this concept leads to the
Dynamically Alterable Primitive Addressing (DALAP) architectural design style.

A DALAP architecture consists of an execute processor (EP) and an access
processor (AP), which operate concurrently in the solution of a task. The design

of the EP is based on RISC principles, and the design of the AP supports the
implementation of a set of addressing primitives which can be selected for the
application. The DALAP design style offers the following main advantages: 1)

decoupled access/execute operation; 2) adaptability by means of access primitive

;election; 3) efficient use of the high density offered by VLSI technology; 4)
efficient memory management functions; 5)1 reduction of the access overhead
associated with computational tasks. -These characteristics underlying the DALAP
design style point to the attainment of high computational performance.

Future research efforts are recommended at:

1) Defining the architectural features characterizing the access and

execute processors of the DALAP architecture

2) Determining the set of addressing primitives according to the

characteristics of the algorithms being implemented

3) The architectural features that are required in order to incorporate the
DALAP architecture in a multiprocessor

4) Optimal use of the available resources (real estate) in the
implementation of the DALAP architecture.
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CHAPTER 5

VLSI BUILT-IN SELF TEST

5.1. Introduction

As Integrated Circuit technology has progressed from Large Scale

Integration (LSI) to Very Large Scale Integration (VLSI) there has been a

decrease in gate costs by as much as three to five times, along with an

improvement in performance. However, a problem never adequately solved for

LSI is still present and is getting worse. This is the problem of determining a cost-

effective way whether a component, module or board has been manufactured

correctly, and when incorporated in a system is functioning correctly.

Testing is a significant portion of the design cost, its effect being felt all

the way to the field application of the system. A standard among test engineers is

that if it costs $0.30 to detect a fault at the chip level, it costs $3 to detect it at the

board level, $30 at the system level and $300 if it is found in the field. It has been

predicted that in the future the key areas in VLSI testing, where test problems are

likely to occur, are as follows:

1. Test Cost. Test cost is proportional to the test time and test time for VLSI

circuits is increasing faster than gate complexity. Unless some solution is

found to this problem, test cost per circuit in VLSI will be greater than in

LSI.

2. Test Pattern Generation Cost. Computer time required for test generation is

also increasing faster than circuit count.

3. Test Data Volume. Test data is growing faster than either test time or test

generation time. Not c 'y is storage and transmission a problem but this

also results in a more expensive and slower tester.

4. Tester complexity. There is an increase in the complexity of the tester as

the number of I/O pins increases and quantity of test data grows. This will

again contribute to increased test cost.

Thus, there is little question that the host of opportunities VLSI offers for

future advances in electronic systems can be realized in practice only if the

major bottleneck of time and cost required for testing can be overcome.

5.2 VLSI BIST Techniques

48



Numerous techniques are currently available for providing Built-in Self-

Test (BIST) in VLSI designs. There are many choices for the circuit designer and

each technique has merit in certain design situations. A criterion of choice can

be outlined based on design objectives. It is more difficult to obtain a measure of

comparing possible alternatives. The work described in the accompanying report

involves classification and comparative evaluation of existing techniques for

VLSI-BIST. The evaluation parameters include hardware overhead, pin overhead,

possibility of extension to system level self-test, system performance, and test

time. This study will help self-test tradeoff decision making and will aid designers

in incorporating self-test features in their designs. The results of this study are

directed towards well-orchestrated board and system level BIST approaches based

on core chip capability.

5.3 Application of BIST Techniques

Studies are made for applying the BIST techniques to digital systems which

are suitable for high performance fault-tolerant battle management applications.

Extensions of these techniques to the general heterogeneous system is shown to

be both feasible and desirable; using the proposed system self-test strategy.

Relevant performance issues in mission critical fault-tolerant C3 applications are

identified. Compact built-in self-test techniques are proposed to support such

systems, and alternate self-test architectures are identified. Results include

modeling the effects of BIST techniques on system computation availability and

area utilization. A comparison of the Penn State approach with a commercial

test/self-test methodology is also present.

This work develops the basis for automatic or computer-assisted support of

comprehensive hardware diagnostics and fault tolerance in large distributed

military systems. Furthermore, this approach produces results which are

applicable to the development, manufacturing, repair depot, and fault tolerant

field environments. An additional advantage is that this research is directed

towards producing a generalized approach to self-testing system design. This

approach results in a uniform design strategy which is applicable to any new

system start. Thus significant economies of scale can be realized over

conventional system design techniques wherein a unique system

architecture/hardware design is developed for each specific problem application.
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CHAPTER 6
A STATE OF THE ART RECONFIGURABLE DATABASE MACHINE

6.1. Introduction

6.1.1. Reconfigurability

Since the last decade, conventional database systems have become more

complex due to the constant growth in the number and size of databases on one

hand and the number and type of on-line users on the other hand. It has been

shown in practice that the conventional von-Neumann type architecture is not

well -suited for database applications because of its: i) inherent sequential control

flow nature, ii) orientation for numeric operation and iii) passive address

accessible memory organization. These characteristics differ from the content

addressability and non-numeric nature of the database operations. As a result,

the existing application gap and its natural byproducts (i.e. computation gap, data

communication problem and name mapping resolution problem) have be-:n a

driving force in the introduction and continuous research of database machines

since the early 70's.

The majority of the recent database machine proposals advanced in the

literature can be classified as either multiprocessor or multicomputer systems.

Such a direction is due to the faster response time and higher throughput of these

systems in a multiprogram/multiuser environment. However, such an

environment introduces issues such as: allocation of processors to concurrently

running queries, increased overhead due to data/control communication among

processors, increased control overhead, and concurrency control; these issues

should be studied in greater depth. It should be noted that because of the current

and foreseeable advances in technology and its effect on reducing the cost, size

and switching delay, such a direction in the design of database machines is both

reasonable and feasible.

Since the third generation computer era, the dynamic distribution of the

hardware resources in a parallel system among concurrently running tasks has

been a viable solution to enhance the system's resource utilization, throughput,

availability and reliability, and fault-tolerant capability. Resource

reconfigurability has been incorporated at different levels of the architecture in

the past. For example, TI-ASC [1], RP3[2] and TRAC [31 allow the dynamic
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reconfigurability of the resources at ALU, processor, and memory levels

respectively. In addition, the Michigan database machine [4] allows a degree of

reconfigurability by exercising different algorithms based on the specific

characteristics of the database involved in the operations.

We believe that due to the general characteristics of databases one can

develop a set of simple algorithms in orde: to enforce dynamic allocation of the

resources among different independent queries in a multiuser environment. The

complexity of such algorithms are clearly architectural dependent and a function

of such parameters as: complexity of the queries, number of tuples in a database,

size of the datablocks, data transfer rate among modules, sensitivity of a datablock

to a query, etc. We have developed such a set of algorithms which allows dynamic

distribution of the resources in the database machine ASLM among concurrently

running queries. Interestingly, dynamic reconfigurability of the hardware

resources enhances the fault tolerance capability of the underlying architecture,

since the faulty elements can be bypassed rather than halting the operation.

Study and analysis of the developed reconfigurable algorithms

in the proposed database machine was one of the major themes of this

research activities.

6.1.2. Incomplete Data

The problem of how to handle raissing information has been studied by a

number of researchers [5-15]. A number of different uses for null values have

been given in [16-17], but the problem of unknown data value represents the most

common usage of null values. Codd [6] introduced a comprehensive extension to

relational algebra that allows the user to examine potentially interesting data

relationships based in part on unknown (incomplete) data. the theoretical

foundations of Codd's new maybe algebra have been examined by Biskup [18].

While these works have developed a strong theoretical basis for maybe

algebra, they have not taken into consideration the practical impact of such

operations. Moreover, the incorporation of these operations (e.g. Codd's maybe

algebra operators [6-7]) have not generally been addressed in the design of the

database machines.
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The incorporation of the concept of null values and maybe

algebra operators in the design of the proposed database machine was

the second objective of our activities.

6.1.3. Database Integrity and Consistency

The relational model makes use of a dependency set to describe the real

world semantics of the data. Three types of dependencies have generally been

considered in database design theory - functional, multivalued, and join

dependencies. In this work, we restrict the dependency set to include only

functional dependencies. While the other dependency types may impact the

integrity of the database, enforcing them require multiple levels of testing. Such

extra cost does not appear to be reasonable even in the parallel environment

provided by database machines. In addition, by restricting our view to relational

databases we are omitting the integrity constraints available in the logical

database environment.

The functional dependency is defined by Ullman [14] as:

X functionally determines Y (denoted X -4 Y) if it is not possible

that two tuples agree in components for all attributes in X and

disagree on the components for the attributes in Y.

It is clear that such an integrity constraint can be tested by comparing one tuple

against the set of tuples that comprise the relation.

Codd denoted that a relation that has been defined without considering the

role of the functional dependencies may demonstrate some update anomalies. The

basic problems can be identified as

i) data inconsistency - updating a portion of a set of redundant data

will create a problem of inconsistent data fields.

ii) insertion anomaly - relevant data items may be blocked from being

stored in the database if important elements of a tuple are not

available.

iii) deletion anomaly - relevant data may be deleted by the deletion of

the last tuple containing the data.
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To combat the anomalies, Codd introduced the coicept of normalization

where the first normal form (1NF) places the data in a tabular format. Codd

introduced the second and third normal forms to reduce the effect of the update

anomalies. In particular, the two normal forms were intended to remove non full

functional dependencies (in X-i-Y, the attributes of Y must be determined by all the

attributes of X to be full functional dependency) and non-key transitivity,

respectively. Boyce-Codd Normal Form (BCNF) has been introduced to deal with

anomalies caused by overlapping keys. While the normal forms were introduced

to improve the logical performance of the data model, they also have an impact on

testing integrity constraints. One obvious issue is that higher levels of normal

forms tend to reduce relation size which may result in some dependencies no

longer being defined with one relation scheme.

Databases fall into two general categories, namely formatted and

unformatted structures. Formatted databases are mainly time variant entities and

subject to extensive alteration as well as search operations. Unformatted

databases (bibliographic or full text) are archival in nature and are processed by

searching for a pattern or a combination of patterns.

Since formatted databases are subject to continual changes during the life

time of a system, the database management system should provide facilities to

allow modification operations as well as retrieval operations. Among these two

classes of operations, modification imposes a higher degree of complexity. This

complexity is due to the:

i) Data dependence between the concurrent execution of the modification
operations on one hand, and modification operations and retrieval
operations on the other hand,

ii) Requirement for proper algorithms and procedures to guarantee the data
integrity and consistency, and

iii) Requirement for proper recovery procedures in order to recover the
original data in case of a system malfunction or improper (intentional or
accidental) data manipulations.

In general, to guarantee system integrity and data consistency, a database system:

i) Should not allow concurrent execution of data dependent operations by
imposing proper locking protocol during the operations, and

ii) Should enforce the content/context dependent integrity constraints during
the execution of the modification operations.
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A Comprehensive policy for using functional dependencies to

improve integrity for ASLM was the third objective of our efforts.

6.1.4. Temporal Databases

In the past few years, a number of researchers have looked at the question

of providing temporal support as part of the data model. McKenzie [26] has

compiled a comprehensive bibliography of the recent work on temporal

databa es. Snodgrass [28] profiles the active research programs looking at some

aspects of time in the database environment. Current results have gone a long

way towards incorporating the required support into the data model.

Maintaining a historical database exasperates the problems of operating on

large data collections. The projected size of the historical databases makes it seem

unlikely that traditional software approaches will be adequate. Lum et. al [29]

have proposed a transaction time system which partitions the database into

current data and historical data. Such an approach preserves the traditional

operations on the current database, but their approach is based on the use of

indexing and as such suffers the limitations of the software solution.

The feasibility of providing temporal support in database

machine ASLM and its application in the decision making process was

the final objective of our attempts.

6.2. Results

6.2.1. Hardware Reconfigurability

The modular design, replicated nature, and hardware independence of the

components of ASLM allowed us to develop a sequence of control algorithms to

enhance the use of the machine resources. The single user environment of ASLM

described in the previous section does not lend itself to a high level of hardware

utilization. Features such as the horizontal and vertical concatentation of the

associative modules allows the resources to be adjusted according to the user's

query at the point of query initiation. A more appropriate policy would allow

reallocation of the hardware resources within a component on a dynamic basis. It
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is clear that the dynamic reconfigurability of ASLM is closely tied to the extension

of ASLM from a single user/single program environment to a

multiuser/multiprogram environment. As a result, one should expect a higher

throughput and performance. Moreover, dynamic reconfigurability of the

hardware resources enhances the fault tolerance capability of ASLM since the

faulty element can be bypassed rather than halting the operation. We have

developed a set of algorithms which allows the dynamic allocation and

deallocation of secondary storage interface cells, preprocessors and associative

modules among a set of atomic queries (an atomic query is referred to the request

of loading a relation).

Average Execution Time

As one can expect, ASLM performance is closely related to the performance

and capability of the preprocessors. Entries in Figure 6.1 shows the average

execution time of the join operation for various type and number of

preprocessors. As can be concluded, for lower number of preprocessors, faster

units offer a better performance. However, as the number of preprocessors

increases this relationship does not hold anymore. This anomaly is contributed to

the facts that:

* Faster preprocessors implies simultaneous execution of higher number

of queries. As a result, one should expect a resource contention due to

the higher demands for the communication lines and access to the

backup resources (e.g. secondary storage interface). This so called

resource contention increases the preprocessor idle time and hence,

increases the average execution time.

* For higher number of preprocessors (especially for faster units) the

probability of simultaneous execution of several subqueries on the same

relation increases. As a result, due to the synchronization policy as

discussed before, the preprocessor idle time increases, which results in

an increase in the average execution time.
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Overall Performance

Entries in Figure 6.2 shows the total execution time of the join for various

type and number of preprocessors. As the figure shows, faster preprocessors

offer a better performance. In addition, an increase in the number of

preprocessors will improve the performance.

Effect of the Auxiliary Memory

Our analytical evaluation showed that the overall performance of the ASLM

can be improved if preprocessors are backed up by a fast access memory. Figure

6.4 depicts this fact. As can be seen by increasing the parallel access capability of

the auxiliary storage the average execution time drops.

Parallelism

As one could expect, in a parallel system an increase in the number of

resources should increase the degree of parallelism and hence one should expect

a better performance. Figure 6.3 shows this fact, indeed by increasing the

number of preprocessors the ability of concurrent execution of queries increases,

this has resulted in a higher overall performance for MIMD organization relative

to SIMD organization. However, in a separate simulation run, we have shown that

the average execution time for the MIMD organization is higher than the SIMD

organization. This is due to the complexity of the MIMD model over the SIMD

model.

6.2.2 . Handling Incomplete Data in ASLM

As discussed earlier, enhancement of ASLM to handle incomplete data and

maybe algebra operators is a major goal of this research proposal. In the

remainder of this section, we examine the action of the join module for the four

join operations. We start the discussion by looking at some features that are

common to all four types of join. In ASLM, the two relations to be joined are
loaded into individual associative modules: the source module (SS) and the target

module (ST). The tuples in SS are tested one at a time against the tuples in ST .

57



3,O0

2.5-

~2.0 0: MC68020
X :INTEL 80285
A: Z8000

p1.5-

S1.0-

0.5--

0.0

0 5 10 15 20 25 .70 35

NUMBER OF PREPROCESSORS

" Each entry is an average of 150 simultaneous runs

* Number of auxiliary storage = 2 units

o Number of communication lines between preprocessors and secondary
storage interface = 2

* Number of communication lines between secondary storage and secondary
storage interface = 2

* Join selectivity = I

* Preprocessing selectivity = 0. 1

Figure 6.2 Total Execution Time of the Join Operation for Different
Type and Number of Preprocessors

58



8000--

X: model with 2 disks
6000 -- model with 4 disks

40C--.

2

0 5 10 15 20 25 30 35

NUMBER OF PREPROCESSORS

* Each entry is an average of 150 simultaneous runs

• Number of auxiliary storage = 2 units

* Number of communication lines between preprocessors and secondary
storage interface = 2

* Number of cummunication lines between secondary storage and secondary

storage interface = 2

* Join selectivity = 1

• Preprocessing selectivity = 0.1

Figure 6.3. Average Execution Time vs. the Parallel Access Capability
to the Auxiliary Storage

59



0

SAverage no. of concurrent subqueries

X Average no. of concurrent queries in

database processor

0 I I J ( f i l l 1 1
0 5 10 15 20 25 30 35

NUMBER OF PREPROCESSORS

" Each entry is an average of 150 simultaneous runs

" Number of auxiliary storage = 2 units

" Number of communication lines between preprocessors and secondary
storage interface = 2

" Number of communication lines between secondary storage and secondary
storage interface = 2

" Join selectivity = 1

" Preprocessing selectivity = 0.1

Figure 6.4. Concurrency vs. Hardware Resources

60



Tuples in ST that satisfy the join condition for a source relation tuple are joined

with the source tuple and placed in a third associative module (the destination

module - SD).

It is natural to assume that one or more of the relations will be too large to

allow its being stored entirely in an associative module. To accommodate large

relations, ASLM stages the relation between auxiliary memory and the associative

module. As previously described, the tuples in SS are compared one at a time with

the tuples in ST. If the target does not fit in ST , then the process repeats for each

successive load of ST . When the tuples in SS have all been tested against the tuples

in the target relation, the associative module SS is loaded with the next set of

tuples from the source relation and the process repeats. Since the entire target

relation must be loaded for each load of SS , it is clearly advantageous to use the

smaller relation as the target relation. Interestingly, the opposite is true for the

case where both relations fit into their respective associative modules.

Analytically and intuitively, several trends were expected in the results.

For example, under the same conditions, true join would be expected to have a

shorter execution time and smaller resultant relation than the maybe join. The

results for attribute maybe join should lie between those for true join and maybe

join. Generally, our simulation results bore out these expectations and produced

failure constant relationships between the varying parameters and the execution

time and size. Table 1 shows some of the results.

6.2.3. Enforcement of Integrity Constraints in ASLM

As noted before, automatic enforcement of the integrity constraints during

the modification operations is one of the major themes of this proposal. In our

preliminary study for a comprehensive insertion and modification operation, we

have considered two general cases, namely Total relations and Partial Relations.

We have developed a comprehensive policy for using functional

dependencies to improve integrity for ASLM. The proposed algorithms maintain

the performance level of the retrieval primitives while expanding the usefulness

of ASLM. In addition, we have calculated the overhead of such an algorithm

analytically. Our analysis has shown that the architecture of ASLM has the

capacity to improve the integrity of the data while not suffering the extreme costs

required in the software approach.
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Table 6.1. Relative Performance of the Join Algorithms

Resultant Relation C join

(Tuples) C S)

True Join 24.3 211.454

Attribute 38.05 564.813
Maybe Join

Maybe Join 57.75 850.807

Outer Join 121.85 222.623

relation size = 50 blocks

# join attributes = 3

Each entry is the average of 200 simulation runs.

6.2.4. Handling Time in ASLM

As .reported in [37,381, we have proposed a query language

ASL(Associative Search Language) to allow easy communication between user and

ASLM. We examined the conversion of the ASL to Temporal ASL (TASL) by

incorporating time related clauses into the language.

We have shown that ASLM can be upgraded to support time primarily by

modifying the query language and correspondingly upgrading the compiler.

Moreover, the support has been added in such a way so as to maintain the level of

performance for traditional processing. Since the current data queries are

processed using only the current file, the performance remains essentially the

same. The only apparent change is that tuples carry the extra fields and as such

the amount of data transferred increases somewhat.
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CHAPTER 7

DISTRIBUTED TRANSACTION PROCESSING

7.1. Introduction

Several factors have motivated the decentralization of computer systems in

general and have made distributed systems economically interesting. These

factors include the decrease in processor and communication (hardware) costs,

the desire for sharing expensive resources (gathered data), the desire for

incremental expansion, and the need for applications requiring geographic

separation of system components (remote sensing). Distributed computing is

becoming more and more common and the need for building reliable systems has

become a major area of research. Higher reliability could be achieved by the

realization of reliable hardware as well as reliable software. This research

addresses the issue of reliable software. Oic of the software tools that has become

a key concept in the field of database is the transaction. A transaction is

defined as an atomic collection of indivisible interactions with the database that

guarantee system consistency. Transactions incorporate recovery schemes to

cope with failures, and concurrency control schemes to cope with concurrent

executions with other transactions.

Even though transactions were originally developed for centralized

database systems, considerable research effort is directed towards extending their

utility beyond these applications. In fact, several operating system research

groups have already applied the transaction concept to some operating system

functions [1, 19, 28, 27].

Since transactions proved to be a very useful notion for implementing

reliable software, there has been a growing interest in extending them to the

distributed environment. The main area of application of distributed transactions

has been that of distributed database systems.

The next two sections briefly mention the motivations for distributed

database systems and identify some of the research issues that were raised as a

result of this distribution.

7.1.1. Motivation for Distributed DBMS
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Database systems, D B M S, first appeared as centralized. This scheme

provided the database managers with centralized control of the operational data

thus allowing them to reduce redundancy, avoid inconsistency, share the data,

enforce standards, restrict security, and maintain integrity.

For database systems, the two main motivations for distribution are the

geographically dispersed location of data as well as reliability. For many of

today's organizations, it is quite common that database users and data are

themselves physically distributed. Therefore, a distributed system will suit the

organization's distributed structure more naturally and better than a centralized

system. A distributed database system consists, typically, of a collection of

autonomous centralized database systems interconnected by a communication

network and logically integrated to form a distributed system. This logical

integration is achieved by using a distributed database management system,

DDBMS.

7.1.2. Research Issues in DDBMS

Distributed DBMSs provide significant advantages over centralized DBMSs

such as better reliability, better availability, data sharing, and incremental

growth. However, Distributed systems raise new problems that are not present in

their centralized counterparts. These problems translate into five major issues to

be addressed: Namely, file allocation, catalog management [18], query processing

[2, 3, 8], and transaction management [11, 12].

There are also considerable research efforts devoted to the topic of

interconnecting heterogeneous database systems [9, 10, 14, 17, 26]. The main areas

of research in DDBMS are File Allocation, Catalog Management, Query Processing,

Transaction Management, and Heterogeneous DDBMS. However, our research

interest is concentrated mainly on Transaction Management.

7.1.3. Plan of the Report

The rest of this report gives a brief description of a model for distributed

transaction processing; as well as its implementation scheme. The primary

emphasis of this research was on reliability issues; namely, recovery. Therefore,

the issues relating to concurrency control in the proposed scheme are not treated

in any detail. However, locking was used as the strategy for concurrency control

for the sake of completeness of the model and for the performance analysis.
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The next section describes the overall structure of the model and describes

some of its implementation details. Section 7.3 presents the conclusions of the

qualitative performance prediction of the system. Section 7.4 provides some

general information about the implementation of the system. Section 7.5

concludes this report and cites some future research directions. It identifies some

possible research extensions to this work in particular and to the area of

transaction processing in general.

7.2. The Distributed Transaction Processing Model

The wide--spread use of distributed systems and the novel characteristics of

transactions have suggested the extension of the transaction concept to the

distributed environment. Transactions that require service at more than one site

are called distributed transactions and should still preserve the same

transaction properties as the centralized ones. However, the decentralization of

transactions raises new issues that are not present in a centralized system.

Among these are communication failures and distributed transaction

commitment.

A distributed system consists of a computer network in which hosts

cooperate towards a goal. This computer network consists of autonomous

computers that communicate via a communication network. Message exchanges

and data transfers in such a loosely coupled system are prone to more failures

than in a tightly coupled system. In addition, they are relatively slow. For real--

time (interactive) transaction processing such characteristics are undesirable.

One way to improve performance and increase reliability is to minimize the

communication overhead of distributed transactions. The transaction processing

model presented in the next section reflects such an idea by introducing a new

construct, called 'execute, that allows the grouping of several transaction

operations under one command.

Our proposed distributed transaction processing model is aimed at

minimizing communication in distributed transactions. This communication

involves buth data transfers and control messages. The proposed scheme,

however, addresses mainly the latter. The reason being that the amount of data

transfer is dictated more by the application whereas the amount of control

messages is dependent mostly on the approach taken to process transactions. The

next few sections present a description of the model and a discussion of its
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'execute primitive. The underlying system consists of several nodes that can

communicate via a network. Each node of the distributed system has one global

transaction manager (GTM), one local transaction manager (LTM), one data

manager (DM), a storage facility for the database files, and a log management

system. The log management system consists of an on--line log storage, a log

storage manager (LSM), and an off--line log storage. The logical structure of one

node of the system is shown in Figure 7.1. Both the GTM and the LTM have some

method of direct access to the on--line storage of the log management system.

This is provided so that log information can be forced directly to stable storage.

The log files that are no longer needed are transferred periodically to the off--

line storage. This operation is controlled by the log storage manager (LSM). The

log manager may incorporate some log compression schemes that will speed up

the recovery process.

7.2.1. Transaction Processing

The primitives issued by a distributed transaction are begin transaction,

read, write, execute, and commit or abort. They are processed in the model

according to the following scheme.

Begin transaction: Upon invocation of this operation, the global transaction

manager (GTM) writes a begin-transaction record in the log, interprets the

request, and decides which nodes are going to be accessed to complete the

transaction. Next, it initializes a run--time global table for the transaction. This

table has a column for each participating node. The header of the column is the

identifier of the called node. Then, it issues a localbegintransaction primitive

to all participating nodes. The local transaction managers (LTMs) of these nodes

respond by writing a local-begin_transaction record in the log and creating and

initializing new columns in their run--time local tables. Each of the headers of

these columns contains the global transaction number and the identifier of the

calling node.

Read(Xitem): The GTM looks in its runtime global tables to find the table of the

involved transaction. Next, it looks for the column of the participating node that

contains Xitem. If it finds a value for Xitem then it returns it to the calling

transaction. If not, it issues a local-read(Xitem) primitive to the appropriate node.

The LTM of the latter, in turn, issues a disk read(Xitem) primitive to the data
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manager of its data storage files. It gets the requested value, adds it as an entry in

the corresponding column of the calling global transaction, and sends it to the

GTM. The latter adds the information as an entry in the appropriate column of its

table and returns the value to the transaction.

Write(Xitem:Xvalue): The GTM checks the transaction's table for an entry of

the item. If it finds it, then it updates it and issues a local_write(Xitem:Xvalue) to

the corresponding LTM and writes a log record of the action. The latter, in turn,

updates its copy of the item. Note that if the item has a copy in the global table

then it must have a copy in the local table as well. However, If the GTM does not

find a copy of the item, then it adds it as a new entry in its table and issues a

local_write(Xitem:Xvalue) primitive to the corresponding LTM. The LTM, in turn,

adds it as a new entry in its run--time table.

Execute(ModuleID,Paral,Para2, ... ,ParaN): Upon receipt of this primitive,

the GTM writes the record to the log, records the necessary information in the

run--time global table of the transaction, and issues a local-execute primitive to

the appropriate LTM. Depending on the identification of the module (Module_ID)

and the parameters supplied (Paral, Para2, ... , Para.N) the LTM determines the data

items to be accessed and the operations to be performed on them, writes a record

to the log, performs the operations and records them in the transaction's column,

and sends the results, if any, back to the GTM. Note that the type of operations

performed and their corresponding logs vary according to the module executed

and, possibly, the values of some data. The commitment of the operations of an

executed module is fully taken care of by the LTM. Executing a module might

require reading and writing data items. These data items are all recorded in the

transaction's column, which resides at the local site, but not in its run--time

global table, which resides at the site of the GTM. The only information kept at

the global table is that of the operation's ModuleID and its parameters Paral,

Para2, ... , ParaN.

Commit: Upon receipt of this primitive, the GTM starts the atomic commitment

part of the process using the 2--phase--commit protocol. It writes a

Prepare-for-commit record in the log, sends the message to all participating

LTMs, activates a timeout device, and waits for a response from each one of them.

The LTMs in turn reply by writing a ready or not-ready record in the log and
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sending the message to the GTM. If a LTM sends a ready message then it must

ensure that it is capable of committing its part of the transaction even in the

presence of failures. If all of the LTMs respond positively, then the GTM writes a

globalcommit record in the log and issues the primitive to all of the LTMs. Every

LTM,in turn, commits its part of the transaction, writes a finalcommit record in

the log, sends the message to the GTM, and removes the transaction's entries from

its tables. Upon receipt of the final-commit messages from all the participants,

the GTM writes a global-final-commit record to the log, deletes the run--time

global table of the transaction, and informs the end user. If any participant

responds with a not-ready message, then the GTM must abort the whole

transaction.

Abort: To abort a transaction, the GTM writes a globalabort record in the log,

issues the global-abort primitive to all the participating LTMs, and activates a

timeout device. The LTMs, in tu.n, write local-abort records in the log, abort

their parts of the global transaction, remove the corresponding columns from the

tables, and send finalabort messages to the GTM. Upon receipt of these messages,

the GTM writes a g!obal-finalabort record in the log, deletes the run--time global

table of the transaction, and warns the end user. However, if the timeout period

expires and the GTM does not receive responses from all of the participants, then

it writes a timeout record in the log and proceeds as in the previous case.

7.2.2. The 'Execute Construct

Transactions submitted to a particular site are serviced by the GTM and LTM

of that site. Howkever, when a transaction requires accessing tems at remote sites,

the GTM forwards the requests on behalf of the transaction directly to the LTMs at

the corresponding nodes. The LTMs are capable of performing several op-rations

on data stored at their sites on behalf of the GTMs. A requested operation could be

simple or compound. A simple operation is either a read or a write. A compound

operation consists of a collection of read and write operations and is initiated by

an 'execute call.

The 'execute construct is a one--level macro that translates int- the basic

read and write primitives at the local transaction manager's level and is issued

by the global transaction managers. This construct enables the programmer to

use fewer communications to execute many commands that would otherwise cause

heavy traffic due to both data transfers and control--messagc exchanges.
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Suppose, for example, that a global transaction needs to perform N read and write

operations at one particular remote site. To initiate one operation, we need a

localread or local-write message from the GTM to the LTM. In order to initiate

the N operations we need N messages across the communication network. If the

programmer can group all of these operations under one module name then it can

be initiated by only one network message from the GTM to the LTM. This

reprcsents a significant gain and the advantage becomes very clear when the

communication across the network is expensive, unreliable, or has considerably

long delays.

Anrther advantage of using the 'execute construct is to be able to some

processing and subtransaction control locally (at the remote site). This will allow

better performance through the overlap of the initiation and execution of many

operations by sending only a few messages across the communication network.

The 'execute construct is basically a compound operation that utilizes the

proposed architecture. The implementation of the 'execute construct, which

belongs to the Atomic Actions Software layer, was built on top of a Remote

Procedure Call facility. The hierarchy of software interfaces used in the

implementation is shown in Figure 7.2 [251.

Application Programs
Software for Atomic Actions

(Execute, etc.)

Software for RPC

Software for Me ;age Passing

Hardware

Figure 7.2. Hierarchy of Software Interfaces

7.2.3 Proposed Model vs. The TM/DM Model

The operations requested by transactions fall into one of two

categories;process management or data management requests. The

begin-transaction,execute, and commit primitives are process management

requests whereas the read and write primitives are data management requests. In
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the light of this classification of requested operations we compare the proposed

model to the TM/DM one [4, 5].

In the TM/DM model, a transaction is represented by one particular process
running at one site and controlling the whole transaction. Therefore, the control

of the processing of distributed transactions is totally centralized. In the proposed

model, however, a distributed transaction is represented by a cooperation of

agents. The agents are the LTMs that reside at the different participating sites.

The processing of the subtransactions of a global transaction are controlled by

the local sites and thus making the control of processing a distributed operation.

Figure 7.3 shows the logical structure of the proposed model.

In the TM/DM model, the transaction manager that initiates the distributed

transaction is the only one that handles process management requests. The other

participating sites handle, exclusively, data management requests. In the
proposed model, on the other hand, the local sites handle process management as

wel! as data management requests. This capability reduces to a great extent the

amount of data and control messages transferred back and forth between the

initiating site (GTM) and the participating sit-s (LTMs).

7.2.4. The Concurrency Controller

Concurrency control is handled by the data manager (DM) of the site where
the requested data resides. For the time being, we are assuming that there is no
replication of data. The locking methods of concurrency control resolve conflicts

as soon as they arise by blocking the conflicting transactions. The optimistic
methods, on the other hand, allow transactions to run to completion before testing

for conflicts. Conflicts are then resolved by aborting the conflicting

transactions. The choice for the appropriate concurrency control method is very

depender:t on the application at hand. Several studies however showed that in
most applications the concurrency controllers that use locking perform better

than those using optimistic methods. Locking induces more rejections while

optimist;- appruahes induce more aborts.

In our model we use locking as the method for concurrency control.
Transactions do not need to explicitly request locks. Appropriate locks are

automatically granted for all read and write operations and released at commit

time. Implementation issues such as the method of setting and releasing locks,

74



Node i Transactio

Transaction Database files

Node j Transaction

Transaction

Node k Transaction

GTM LTM DM

Transaction Database files

Figure 7.3. Logical Structure of the Proposed Model
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the conversion of lock modes, the granularity of accessed data, the scheduling of

wait lists, and the handling of starvation and deadlocks are beyond the scope of

this report.

7.2.5 The Recovery Mechanism

Recovery deals to a large extent with the problem of preserving

transaction atomicity in the presence of failures [11, 12, 15, 16, 27]. In distributed

systems, the implementation of atomic actions requires the provision of a special

protocol for atomic commitment among sites (global) as well as some recovery

capability at every participating site (local).

In the proposed model, atomic commitment is based on the 2--phase--

commit protocol. This protocol is resilient to all failures in which no log

information is lost. During the commitment stage, when a LTM answers with a

ready message to the global commit call, it takes the responsibility of committing

its part of the transaction even in the presence of failures. Therefore, If the

global decision is to commit and a local failure occurs, then local recovery must be

provided to restore the consistency of the local site. Recovery must then be

provided at both the local and global levels. The next few sections discuss

recovery at the local level and then extend it to the global level.

Recovery at The Local Level: Recovery at the local level is provided by the

local site. In our implementation, when a local failure occurs, the local recovery

procedure uses the log records to restore the consistency of the database. The

only recoverable failures considered are system failures (loss of volatile storage)

and media failures that do not involve log files.

Recovery at the Global Level: Atomicity of the distributed transaction

depends on atomicity at both the local and global levels. At the local level, and at

each participating site, the LTMs must guarantee that all or none of the actions

are performed. At the global level, the GTM must guarantee that all the LTMs take

the same decision with respect to the commitment or abortion of their parts of the

transaction. The local recovery is handled by local recovery managers and thus

we only consider recovery at the global level.

The main global system component that is vulnerable to failures is the

communication network that connects the different sites of the distributed

system. In terms of the communication facility, we assume that if site X sends a
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message to site Y and Y receives it, then it was correct and in the proper sequence

with respect to other X--Y messages, and within a reasonable predefined period of

time MAXDELAY. Furthermore, if two sites X and Y cannot communicate, then the

network is partitioned into at least two groups, one containing X and the other

containing Y. This is based on the assumption that as long as there is a path the

communication network is capable of rou'.ing messages and delivering them

properly.

The failures to be considered are those resulting from lost messages and site

crashes. When communication failures occur during transaction processing but

before the commit operation, then the transaction is simply aborted. However if

all operations are successfully completed and a failure occurs at commit time,

then it is handled by the 2--phase--commit protocol. A more detailed discussion of

the behavior of the 2PC protocol in the presence of the various failures can be

found in [20].

7.3 Summary of the Qualitative Performance Analysis

. A qualitative performance analysis of the model was carried out in order to

predict the performance of the system. In this analysis it is assumed that all

service times are fixed (network of delay stations) and thus there is no queuing.

The processing of a successful transaction is composed of three phases:

Initialization, execution, and commitment. The analysis derived equations for the

service times required for processing the different steps of a distributed

transaction and then derived an expression for the total time required to complete

a transaction. The analysis assumes no failures. The parameters of interest that

describe the model and used in this analysis are:

S The average number of sites accessed by a distributed transaction.

X The average number of primitive operations performed by an

execute call.

N The average number of calls made by a distributed transaction.

P Probability that a primitive operation within the execute module is a

read

PE Probability that the call is a execute
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PW Probability that the call is a write

PR Probability that the call is a read

NW Average number of $write$ operations in a distributed transaction.

NR Average number of read operations in a distributed transaction.

NT Total number of primitive operations in a distributed transaction.

C Capacity of the communication channel.

Lmsgl Length of a short message (one packet).

Lmsg2 length of a long message.

Dmsgl Transmission time for short messages.

Dmsg2 Transmission time for long messages.

D stable Time required to update stable storage.

"Di/o Time required for in 1/0 operation.

Dinit Time required to initialize for a distributed transaction.

Doper Time required to process a read or a w.ite operation.

Dexec Average time required to process an execute call.

Dcommit Time required to process the commitment phase of a distributed

transaction.

Dtrans Time required to process a distributed transaction.

Here we omit all derivations and analysis and show only the final curves

along with some comments.

Figures 7.4, 7.5, and 7.6 show the results of the qualitative performance

analysis study. The figures show how the transaction processing time varies with

he various parameters of interest.
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Figu'e 7.4 shows the transaction processing time as a function of the
parameter PE for C = 100 Kbits/second. It shows that for a fixed number of

primitive operations the transaction processing time decreases exponentially as

the frequency of using the execute construct increases. When PE = 0, the

transaction processing time is at maximum and the proposed model approximates

the TM/DM one. It should be noted that for PE = 0 the proposed model actually

takes a longer transaction processing time due to the overhead at the LTM. This

overhead consists of the additional local logging that is not present in the TM/DM

model.

The steps required for executing an operation in the TM/DM model are the

same as those of the proposed one except that there is no local logging. For PE = 0,

the processing time for 100 operations is 34.3 seconds in the TM/DM model as

compared to 44.131 seconds in the proposed one. However, the proposed model

matches the TM/DM one for PE = 0.05 and outperforms it for higher values of PE.

Figure 7.5 gives a better picture of how the execute construct improves

transaction processing time. It shows plots of the quantities N Doper and Dexec

with X=N as a function of the number of operations N. For a single operation, SN =

I$, the two quantities are equal. However, as N increases, the use of the execute

construct results in a significantly lower service time due to a lower number of

control messages.

Figure 7.6 shows the transaction processing time versus the chai, tl

capacity for PE = 0, 0.1. 0.2, and 0.5, respecti ely. It can be seen from the fiture

that as the communication delays become larger, the transaction system shows

better performance for higher values of PE. Therefore, an implementation that

utilizes the execute construct more frequently will perform better in the face of

communication delays. In fact, the transaction processing time becomes less and

less sensitive to communication delays as PE increases.

7.4 The Implementation

The design presented in this report was implemented in a UNIX

environment on a collection of computers interconnected by a local area network

(LAN). We have also implemented a Remote Procedure Call (RPC) facility on top of

which we built the communication mechanism. The RPC facility was also used in

the implementation of the execute construct; with minor changes in the

semantics of the calls.
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The system is operational and being tested for some performance data to be

compared with the predictions discussed in the previous section. We are

running the system in a local area network environment and we intend to test it

in a long haul network to see the effect of communication delays on the rate of

transaction aborts/restarts caused by timeouts.

The experimental system will also serve as a testbed for implementing and

testing other transaction management--related algorithms developed by our

research group.

7.5 Conclusions and Future Directions

7.5.1 Conclusions

The ever increasing use of distributed computing and the desire for

reliable systems led to the extension of the transaction concept to the distributed

environment. The primary aim of this research was to study reliability issues in

distributed systems and design a distributed transaction processing model.

In this report, we introduced a model for distributed transaction processing

in a Local Area Network environment and discussed the details of its

implementation scheme. The issues relating to concurrency control in the

proposed scheme were not treated in any detail. However, locking was used as the

strategy for concurrency control for the sake of the completeness of the model

and for the performance analysis. The locking scheme (2PL) was used in the

implementation.

The model presented is aimed at minimizing data transmissions and message

exchanges between remotely located sites by using the execute construct. This

communication reduction will decrease the probability of failures that are due to

communication problems as well as increase parallelism in the execution. This

will increase both the reliability and efficiency of the distributed transaction

processing system. A performance analysis of the proposed system was carried

out and here we showed only some performance curves that summarize the

analysis. This analysis showed that the use of the execute construct helps

achieve better transaction processing time as well as alleviate the effects of

communication delays on performance.

7.5.2 Future Research Directions
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The next steps of most concern to this work are the design of a more

elaborate concurrency controller and the evaluation of the implementation of the

prototype. Also, a more detailed performance analysis that relaxes some of the

assumptions made by the presented study will be of interest.

A long term research direction is an investigation of the model's feasibility

in heterogeneous database management systems. The use of the execute construct

provides a way of implementing predefined procedures on a number of database

items. Therefore, in a heterogeneous autonomous environment data (objects) will

be shared through predefined procedures and the remote foreign users will not

have to know the details of implementation of local functions.

Another potential important research area is that of transaction

processing in Federated/Heterogeneous DDBMS or F/HDDBMS. The subject of

F/HDDBMS is becoming increasingly important. It promises to solve many of the

problems of accessibility to multiple heterogeneous database systems under

temporary ur permanent logical interconnections. The main issue that relates to

this work is that of transaction management in non--cooperating environments.

This topir has been addresses to a reasonable extent but mainly for queries. The

problem of global updates still lags far behind in terms of both research and

implementation. More research needs to be done in the areas of concurrency

control qnd recovery in autonomous F/HDDBMS.

Object--oriented databases seem to make more sense for heterogeneous

federated systems and it would be interesting to investigate the suitability of the

transacion model presented in this report to such environments. Investigations

of this transaction model as applied to federated heterogeneous (object--oriented)

systems is under way.
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CHAPTER 8

SYSTEM LEVEL ERROR CONTROL IN FILE SYSTEMS

8.1. Introduction

Remote replication of data is important for system fault tolerance, since

data destroyed at one site remains available elsewhere. It also reduces

communication needs during periods of activity, since data is already available at

each site. Having the data replicated has an additional advantage which has not

previously received much attention: it provides the potential to quickly detect

small errors, inconsistencies and alterations in individual copies of the data. This

work is concerned with techniques for realizing such potential. Methods were

developed of organizing and checking replicated data files in such a way that

errors in one or more of the copies can be readily detected and corrected using a

minimum amount of communication. A parity checking structure previously

developed by Metzner [1] formed the foundation for this study.

8.2. Summary of Principal Results

Divide the file copies into units, denoted as "pages". A quantity called a
signature is derived from each page of data, according to parity rules which

differ pseudorandomly for different pages [1]. This is done in the same way for all

remote copies. To compare files, form various linear combinations of signatures,

and communicate these combinations to other sites. A simple example of such a

combination is the vector sum of all page signatures of the file. Communication

of this vector sum, which may typically be about 40 to 60 bits, it is sufficient to

verify with high confidence whether the copies are identical, even if the

individual files contain billions of bits. In order to find the pages where large

files disagree, additional signature combinations are sent. Techniques were found

for which the amount of communication needed to locate the disagreeing page is

remarkably small, and the amount of decoding computation is not excessive.

Initially, the work centered on combinational rules based on the structure

of a first-order Reed-Muller code. In this case, for a 2 k page file, k+1 signature

combinations are formed. The combination rules are described by a matrix. For

example, for k=3, the matrix is
11111111
11110000
11001100
10101010
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Each row of this matrix represents a signature combination, and each column

position represents a page; in particular, the combination is the vector sum of all

page signatures for which the row entry is a one. It was found that, using these

combinational rules, any one or two disagreeing pages could be immediately

identified in a computationally relatively simple manner.

A method was then discovered of immediately identifying larger numbers

of disagreeing pages by sending a greater nimber of combinations. The first

discovery was that by using a second order Reed-Muller code, which involves

sending l+k+k(k-1)/2 combinations for the case uf 2 k pages, up to any six

disagreeing pages could be identified immediately.

The result discovered by Kapturowski for Reed-Muller codes was then

generalized by apply to any parity check code by Metzner, and a joint paper based

on these ideas has been submitted to the IEEE Transactions on Information Theory

[2]. This paper is included as an appendix to the portion of the final report

dealing with this subject.

The general result in [2] was that any parity check code with s check

symbols and minimum distance d can be used to derive s signature combinations,

by which almost any d-2 or fewer disagreeing pages can be located. The fraction

of nonlocateable patterns of d-2 or fewer pages goes down exponentially with

signature size, and thus can easily be made negligible. The computational

complexity is roughly proportional to the effort involved in inverting a matrix of

dimension equal to the number of disagreeing pages. This result represents a

large advance over previous schemes [3,4,5], which permitted location of only one

or two disagreeing pages with a single data exchange. Reed-Solomon codes are

among the most efficient; for these codes only t+1 signature combinations need be

communicated to locate t or fewer disagreeing pages. As an illustration, if two

1000-page files differed in 5 pages, the location of the 5 disagreeing pages could

be found with great confidence by sending only six signature combinations,

totaling about 360 bits communicated.

8.3. Potential Applications

1. Protection is provided against accidental or malevolent alteration of any

portion of one of the replicated copies - this can be discovered by periodic

communication between sites having copies, and the location of the problem can

be quickly pinpointed.

88



2. It can be a backup for consistency maintenance in systems where

replicated copies are updated occasionally. Although several algorithms are

available to ensure consistency in updating replicated copies, the proposed

technique could provide an occasional overall check whether the copies have

truly remained identical.

3. In case of failure, it is useful in system recovery. Both the ability to

recover and the speed of recovery can be improved. A group at Princeton

University reports a recently built triple modular redundancy data base system

for which there are plans [5] to incorporate a file comparison algorithm based on

the page signature structure that is being considered here.

4. The technique is useful for continually monitoring for system faults. A

computer-controlled military system may spend most of its time relatively

inactive; the period of full use of its capabilities may be relatively very short.

Thus faults may be more prevalent during the inactive period, and it is very

important to have means of maintaining the system in the correct mode despite

faults during this long period. Fault checking during this period must be

thorough, but is not severely time critical. The error-checking techniques

described here are well suited for this purpose, and can continually verify proper

operation and storage of information in systems employing replication. Sources

of error are located efficiently and with minimum communication between

elements.

5. In file transfer, it can be used to prevent the need for retransmitting a

whole large file if just a part is received in error. Sending back signature

combinations will reveal the erroneous pages, if there are any; then only

erroneous pages need be resent.

6. The signature computation for a page, compart, a prior computation

for that page, can provide automatically a basic need for ,,ory error detection.
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CHAPTER 9
DEPENDABILITY TOOLS FOR BUTTERFLY AND

HYPERCUBE COMPUTERS

9.1. Introduction

A major goal in the design of parallel architectures is to provide high

computing power with assured dependability*. High computing power can be

provided by exploiting the parallelism in the application algorithms and by

mapping these parallel algorithms onto the parallel architectures.

The second requirement, "assured dependability" of parallel architectures,

stems from the critical applications in which these machine are used. The

performance analysis of the parallel system implicitly assumes that the

components of a system are fault free. These results give the so called "ideal"

performance of a system. However, in a real situation the components of a system

fail at random depending on the failure rates of the components. At the system

level, a multiprocessor consists of two subsystems. One subsystem is the

computation facility which is provided by processors (nodes) and memories. The

second subsystem is the communication network, used to support interprocessor

communication. The failure of a processor (node) or a memory unit reduces the

hardware resources available on the system. The failure of the interconnection

switches or links degrades the communication capability of the network. All

these faults affect the dependability and performance of the system to varying

degrees. A common approach to improve the fault-tolerance of these parallel

systems is to provide graceful degradation as an inherent attribute of a system.

Reliability evaluation of parallel systems has been studied under two

different approaches, namely: terminal reliability and task based reliability.

Terminal reliability is defined as the probability that at least one communication

path exists between a pair of nodes. This may be an oversimplified estimate for

parallel systems where a job (task) is executed concurrently over several nodes.

The task based reliability, on the other had, assumes that a system remains

operational as long as a task can be executed with the available resources on the

system. This is a more appropriate measure of reliability in a parallel processing

domain.

* Dependability is a generic concept that encompasses reliability, availability,

maintainability, and safety as distinct facets of system specification.
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There are several automatic program packages such as ARIES, CARE III,

HARP, SAVE, and SHARPE available for computing the dependability of complex

systems. Exact system reliability can be computed using these models. However,

these packages are not general enough to handle complex interconnection

structures. For example, none of these packages can generate the Markov chain

of n-dimensional hypercube automatically. Some for of input, such as a Fault tree

of a Markov Chain, of a system is given to these packages for computing

reliability. Unfortunately, there is no technique available to generate either the

Fault tree or the Markov Chain of a degradable hypercube.

This report summarizes the research efforts accomplished on the

dependability evaluation of Butterfly and Hypercube architectures. The BBN ACI

Butterfly system is a commercially available MIN-based multiprocessor.

Hypercube multiprocessors are a relatively new entrant in the parallel process

arena. Hypercube systems with up to 1024 processor nodes are commercially

available. The research results are reported in the following two sections. In the

next section, evaluation of some of the existing dependability tools is reported. In

Section III, a brief review of the analytic models developed for the task-based*

reliability evaluation of Butterfly and hypercube systems are presented. The last

section describes the future work.

9.2. Evaluation of Existing Tools

There are a number of existing tools available for computing dependability

of redundant systems. Tools such as ARIES, CARE III, HARP, and SHARPE can be

used for reliability analysis where as tools such as HARP, SHARPE and SAVE can be

used for both reliability and availability analysis. SHARPE, on the other hand,

can be used for performability evaluation. In this section a brief summary of

CARE III, HARP, and SHARPE is given. The conclusions regarding the

applicability of these models to candidate architectures also apply to other tools

not summarized here.

9.2.1. CARE III

CARE III (Computer Aided Reliability Estimation, Version Three) is a

program designed to estimate reliability of complex redundant systems. It was

* Task-based evaluation is based on the assumption that a system remains
operational as long as a task can be executed on the system.
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developed specifically for fault-tolerant avionics systems, CARE III features are

summarized below.

Capabilities

- Predict the unreliability (1-reliability) of a system consisting of up to 70

stages with each stage composed of one or more identical modules. Can

handle hardware/software faults of various types such as permanent,

transient and intermittent.

- User must specify the number of modules in each stage, the minimum

number of modules needed in each stage for the system to operate properly,

the various combination of stage failures that constitute a system failure

and the probability that a specific module from stage i forms a critical pair

(system failure) with a specific modules from stage j. Hence, a system tree

specification involving the critical pairs must be given as input to the

program. The lower level faults in the fault tree specification are stage

failures.

- Modules imperfect fault handling (coverage) using Markovian technique.

Fault distribution is given by a Weibull function.

Disadvantages

- Can not model availability.

- Fault tree in terms of critical pairs of a MIN-based system or hypercube is

very difficult. The number of each critical failure combination can be too

large to specify for a medium or large size system. Particularly various

combination of switch failures that can lead to system failure in a Butterfly

type system is extremely difficult to specify.

- Can not model performance-related dependability.

9.2.2. HARP

HARP (Hybrid Automated Reliability Predictor) is a software package

developed at NASA. Its advantages and disadvantages are given below.

Capabilities
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- Can compute both reliability and transient availability of computer systems

using behavioral decomposition along temporal lines. The overall model is

decomposed into fault-occurrence/repair (FORM) and fault/error handling

(FEHM) submodules to analyze the fault-occurrence and coverage effects

effectively.

- Can handle various types of faults as described in CARE III.

- User must input either the Markov chain of the system or a Petri-net

model, which can be converted to Markov chain automatically for

computing dependability. The other alternative input can be a fault tree

specification of the system.

Can model systems with sequence dependant failures.

Gives guaranteed bounds on reliability.

Weibull distribution for reliability modeling.

Disadvantages

- Cannot compute MTTF or steady state behavior for repairable systems.

- Cannot guarantee the Markov chain automatically. As has been pointed out

earlier, generation of the Markov chain is complex for systems like

Butterfly or Hypercube. Also, a fault-free specification of the candidate

parallel system is not simple. Hence, the difficulty of finding the input

model restricts the usefulness of HARP to parallel architectures under

consideration.

9.2.3. SHARPE

SHARPE (Symbolic Hierarchical Automated Reliability and Performance

Evaluator) is currently under development at Duke University [Shaner 87]. In

addition to dependability evaluation, it has the capability to include performance

with dependability, such as performability. It's advantages are the following.

Capabilities

- Supports seven model types such as reliability block diagram, fault tree

without repeat nodes, acyclic Markov chains and irreducible cyclic Markov

chains to be combined hierarchically in a flexible manner.

- Allows to use either combinatorial or Markov/Semi-Markov submodules.

- Uses Symbolic computation.
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- Input to the model is in the format of reliability block diagram, fault-tree,

or Markov chain.

Disadvantages

- As like HARP, construction of the fault-tree of Markov chain is again the

challenging problem. Development of a reliability block diagram is also

not simple to model task based evaluation.

9.2.4. ARIES

ARIES was designed to satisfy the requirement of analyzing systems which

employ protective redundancy techniques such as static, dynamic, hybrid, and

gracefully degrading redundancy. A main objective of ARIES is to provide the

tools for life cycle analysis.

Capabilities

- Support life cycle measure. Life cycle evaluation includes mission-time,

and dependability measures.
- Uses Markov Models for reliability prediction.

- Interactive system.

Disadvantages

- Only exponential distribution can be used for failure and repair

phenomena.

- Only one level of redundancy as opposed to multilevel redundancy.

- Complex system is not allowed. Every component in the subsystem should

be connected to each other.

- Inaccuracies.

9.3. Research Accomplishments

9.3.1. Butterfly Dependability

Multiprocessor system using multistage interconnection networks (MINS)

have been an active area of research for more than a decade. However, there is

little reported literature on the analytical modeling of MIN based multiprocessor
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systems, mainly due to the NP-hardness of the network structures. We have

developed a reliability model for a class of MIN-based multiprocessors, known as

Butterfly system. The basic switching elements of the MIN are 4x4 crossbar

switches. The name "Butterfly Network" is used because of its topological

similarity with that of a Fast Fourier Transform Butterfly.

9.3.1.1. A Reliability Predictor for Butterfly

This section presents an analytical model that we have developed for the

task-based reliability evaluation of Butterfly systems. The modeling approach is

based on system decomposition and combinatorial techniques. Since the MIN is

composed of 4x4 switches, the sys' size is given by 4i. The reliability of a 4i

system is obtained from four 4i-1 subsystems and the connection pattern between

those subsystems. We start with probability expressions for 4 PEs and 4 MMs (4x4)

and develop a model for a 16x16 system. Results for a 16x16 system are used for

analyzing the 64x64 system, which in turn is used in 256x256 system analysis.

There are two different ways a connected group of i PEs and j MMs can be

available on the system. The first is. the case where exactly i PEs and j MMs are

working, and at least the required number of SEs are perfect for providing

connection between any PE and MM. In the second situation, more than the

required number of processors and/or memories may be working on the system,

but, the total connectivity is (i x j). This is possible when the number of working

switches are just sufficient to provide a connectivity (ixj).

The model is suitable for the analysis of any system size, such as (16x16),

(64x64) or (256x256) node Butterflies. Moreover, this model also considers all

possible situations for any system size (ixi). Analytical results for various size

Butterfly Systems have been compared with simulation results to show that they

are in close agreement.

While our reliability analysis is presented for unique path MIMD

architectures, it can be extended to include extra stage of switches to analyze the

Butterfly System exclusively. The model can also be applied to multiprocessors

using 2x2 SEs without much difficulty.

9.3.2. Hypercube Dependability

Hypercube architectures have received much attention in recent years as

vehicles for concurrent processing. A hypercube, also known as Boolean n-cube,
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is an n-dimensional multicomputer network. Each of the 2n vertices of the

hypercube is a compute (node) connected directly to its n neighboring nodes.

The communication among the nodes is based on a message passing protocol.

Since a number of common interconnection topologies, such as ring, tree, and

mesh, can be embedded in a hypercube, the architecture is suitable for both

scientific and general purpose parallel computation.

9.3.2.1. A Reliability Predictor for Hypercube

We have developed an analytical model for the task-based reliability

evaluation of hypercube systems. The model is based on the decomposition

principle. A large cube is recursively decomposed into smaller cubes until the

modeling of the smallest cube, known as the base model, is simple. A 2-cube (4

nodes) or a 3-cube (8 nodes) is used as the base model hypercube. Reliability of

the higher dimension cubes are obtained recursively from either of these base

models by approximating the connectivity between two lower dimension cubes.

Najjar and Gaudiot have presented another technique for the reliability

evaluation of hypercubes with up to 50% system degradation. Under this

approach, the system works as long as there are no disconnected groups. This

implies that even if a task requirement is satisfied, the system is considered down

if there is any disconnected node(s). However, their model would give a

conservative (low) estimate of system reliability particularly for small tasks

(more than 50% degradation), since it does not consider all possible situations for i

connected nodes in an n-cube. Our model is more general in a sense that it can

consider any degradation.

The reliability of the hypercube is calculated by finding the probability of

j connected working nodes, P(Cn = j). To calculate the probability P(Cn = j) we

divide the n-cube into two (n-l)-cubes (groups). There are two situations under

which there will be j connected processors in the n-cube. In the first situations,

exactly j connected nodes are working in the hypercube, with k nodes in one

group and (j-k) nodes in the second group. In the second situation there are more

t.an j nodes working in the hypercube, but the actual connectivity is only j. For

elther of these two cases, there are two possibilities for the nature of the

connectivity between the two (n-1)-cubes. Either the k and (j-k) nodes working

in the two (n-1)-cubes are all connected in their individual groups and the total

connectivity is j, or one of the two groups is not internally connected but the total
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connectivity is still j. For the second case, where a total of more than j nodes are

working in the two groups, the two working groups may or may not be connected.

These four types of distributions are included in the reliability model to

find j connected nodes. If a task needs at least I connected working nodes, the

system reliability Rs(t) of an n-cube is computed from:

2 n
Rs(t) = 1P(Cn=j).

j=I

We have developed a simulation program to validate our analytical model.

Analytical results for various hypercubes match nicely with the simulation

results. While the analysis is based on the exponential distribution in this report,

it should be noted that the model is also valid for other distributions. For example,

general distribution like Weibull can be used by simply changing the individual

node reliability notation.

9.3.2.2. An Availability Predictor for Hypercube

Availability modeling of a system with single repair facility is more

complex than reliability modeling. This complexity can be attributed to two

reasons. Firstly, the generation of the Cyclic Markov Chain (CMC) of a system is

required for its availability analysis; this can be quite complex for a large system.

The number of states in the model can also be too large to handle easily. The

second problem is in estimating the transient or steady-state behavior of the

system. Closed-form solutions for transient or steady-state availability of a system

are extremely difficult, if not impossible, to derive. Therefore, numerical

techniques are used to compute availability.

We have developed an analytical model for the availability evaluation of

hypercube systems with a single repair facility. The model uses an approximate

technique to compute the transient and steady-state availability of hypercubes of

any size. Generation of the MC of a hypercube is not required for this technique.

The model first computes the probability of x connected nodes, (for x S N = 2n),

assuming that all the N nodes in a hypercube are fully connected. This problem

reduces to a machine repairman model (with or without imperfect coverage)

having N nodes. Probability of a state x at any time t can then be computed easily

using any standard availability package. This probability is multiplied by a
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branching probability that gives the probability of j connected nodes out of x

working nodes in a hypercube. The branching probability in turn is computed

using the decomposition technique developed for reliability evaluation. A

recursive equation is used to compute this probability of an n-cube from a 2-cube

base model.

The complexity of generating the exact Markov chain of a repairable

hypercube is avoided by using this approximate technique. Under this approach,

the generation of the Markov chain is very simple, and the state space is limited

in size to no more than 2N for imperfect coverage and N+1 for perfect coverage.

The validity of model has been examined by comparing the analytical

results with simulation results for different task requirements. We have also

verified the validity of the analytical model over a wide range of failure and

repair rates. In all the cases, the analytical and simulation results match closely.

9.4. Future Work

It was pointed out in the introduction that there exists no tool that can be

used for the exact dependability evaluation of the above systems. As architectures

become more complex to achieve high performance, the dependability evaluation

tools should be able to handle these machines.

Since there is no generic tool that can be used for these complex systems,

models have been developed on a case by case basis. However, these models are

still in the developing stage. A number of extensions are possible to improve the

capability and accuracy of the models.

Work on Dependability Tools

a) If the Markov states of a parallel machine can be generated, HARP or CARE

III type packages can solve the Markov models to find

reliability/availability. Automatic stage generation is possible from the

fault-tree or petri-net description of a system. Hence, development of

fault-trees for various parallel systems is essential. The state generation

tool would be used as a front-end package to HARP or CARE III.

b) We have analyzed only Butterfly network that uses 4x4 switches. Since a lot

of multistage networks have been proposed with 2x2 switches, extension of

these models for 2x2 switches is proposed.
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c) The idea of the availability model, developed for Hypercube can also be

applied to Butterfly. We plan to develop the availability model for the

butterfly after the reliability model is completely tuned.

d) Current experience with HARP indicates that it cannot handle large

Markov states. For example, we have difficulty in solving the fault-tree of

a 16-node Butterfly with 50% degradation on HARP. Naturally solution of

64-node or 256-node systems would require more capability. Hence,

research must be done to handle the generation and solution of large

Markov models.

Work on Performance-related Dependability Tools

While classical dependability measures such as reliability and availability

are suitable to evaluate uniprocessor systems, these measures may not be good

indicators or parallel system behavior. Dependability measures specify only the

operational status of a system at any time t. No performance statistics can be

gathered from the reliability or availability study. High performance being the

main objective of parallel architectures, performance-related dependability is

essential to evaluate these machines.

Performance-related dependability measures are unified techniques to

evaluate gracefully degrading systems. Measures of this type require the

combined evaluation of both performance and reliability.

A number of performance-related dependability measure such as

computation reliability, computation availability, performability, capacity and

workload characterization, have been proposed for degradable multiprocessors.

However, none of these models have been applied in a real sense to Butterfly or

hypercube. We would like to combine performance with the previously

developed/proposed dependability tools to characterize these architectures.
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CHAPTER 10
ALGORITHM MAPPING ON MULTISTAGE

NETWORK PARALLEL COMPUTERS

10.1. Introduction

10.1.1. Objectives

Reconfigurability is an attractive property provided by the multistage

interconnection network for adapting processor interconnection patterns to meet

the communication requirement. The goal of our research efforts is to exploit

this valuable property to minimize interprocessor communication cost for

parallel algorithms mapped on the multistage interconnection network. In this

study we propose two approaches to achieving this goal: (1) Recast parallel

algorithms with dynamic communication structures; (2) Design high-level

computation primitives with contention-free communication.

10.1.2. Motivations

Designing parallel algorithms with dynamic communication structures is

motivated by the desire of altering algorithm communication structure during

execution. It has been found that parallel algorithms may have variable

communication structures in different computational phases. The flexibility of

changing the network structure to match the algorithm communication structure

provides the potential of attaining peak algorithm performance. The multistage

interconnection network is one of many reconfigurable machines providing

such flexibility. Three algorithm designs will be shown in the subsequent

sections for illustrating this design approach. The algorithms are designed on the

basis of a multiprocessor system model as shown in Figure 10.1.

In parallel processing applications, there are many primitives frequently

used to perform global operations, such as data broadcast, selection, collection,

and swapping. If these primitives are based on node-to-node communication, a

data broadcast, for example, can be viewed as a sequence of one-to-one, store-and-

forward communications between the source node and the destination nodes. It is

possible for users to implement these primitives by explicit one-to-one

communications coded in the program. However, in the multistage

interconnection network environment, the user-implemented primitives may

incur serious communication delay due to potential network contention. The
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basic idea of our proposed second approach is to develop contention-free optimal

communication structures for these primitives. The use of these structures would

relieve the burden of optimizing communication and coupling communication

processes from the programmer. Section 5 represents such an effort of mapping

a quadtree structure onto the Butterfly network for achieving fast, efficient data

broadcast and selection.

10.2. Parallel Conjugate Gradient Algorithm

A parallel algorithm of the conjugate gradient method is presented for

solving two-dimensional elliptic partial differential equations [1]. The algorithm

is featured by its communication structure, which is dynamically varied in

different computational phases to provide efficient interprocess communication.

This makes the algorithm different from other works [2-4], where a fixed

communication structure has been used throughout the algorithm execution. The

target machine of the algorithm is assumed to be a class of reconfigurable

multiprocessors [5-8] which can achieve a variety of commonly used topologies to

best match communication structures of parallel algorithms.

By the formulation of finite element methods (or finite difference

methods), a two-dimensional elliptic partial differential equation is reduced to the

solution of a linear algebraic equation: [A][X] = [b]. where A is an nxn symmetric,

banded, and positive-definite matrix, X is an nxl vector whose values are to be

solved, and b is a generating vector from the elliptic partial differential equation.

A synchronization mechanism is designed for this parallel algorithm after

carefully analyzing the ordering of iterative steps in the conjugate gradient

method. To ensure that this synchronized algorithm works correctly and

effectively, processes have to synchronize and exchange dat with each other.

There are a certain number of points where the processes communicate with

other processes in this algorithm. These points are called interaction points,

which divide the processes into stages. At the end of each stage, a process must

communicate with other processes before initiating the next stage of

computation.

With this partitioning method, the parallel algorithm is mapped onto a

configurable multiprocessor system [5]. The mapping algorithm consists of three

horizontal computation stages in each iteration. Each computation stage is then

divided into three different computational phases, in which a regular
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communication structure is provided. Figure 10.2.1 shows two configuration

examples achieved by the configurable multiprocessor. It also shows a general

communication structure consisting of 2n+l processes for solving a problem of

size n. The first process is used for interprocess synchronization, while the other

2n processes are used for performing the arithmetic computations.

The dynamic communication structures in three computational phases are

described as follows. In the first computational phase, a broadcasting tree

structure is generated. Then a 2xn mesh structure follows in the second

computational phase. In the third computational phase, a reverse broadcasting

tree structure is provided by the configurable multiprocessor.

Evaluation of the parallel conjugate gradient algorithm is accomplished by

implementing it on a simulator (PAPA), which consists of Pascal-like parallel

language and a compiler. The parallel language can provide facilities for

creating processes and coupling them through several communication

primitives. We use nine processes for solving a linear equation with an nxn

symmetric, banded, and positive definite matrix. The average execution time

obtained by using multiple processes is compared with that by using a sequential

program running in one process. Based on the simulation results, we observed

that the speedup is approximately equal to the number of processes used. Also, the

efficiency, which is defined as the ratio of speedup and the number of processes

used, of the parallel algorithm is nearly close to an optimal value.

10.3. Parallel QR Algorithm

A parallel QR algorithm with dynamic communication structures is

presented for solving the eigenvalue problems of a nonsymmetric matrix [9]. A

widely accepted method for computing all the eigenvalues of a nonsymmetric

matrix A is to first transform A into an upper Hesscnberg form and then to apply

iteratively QR algorithm to this upper Hessenberg matrix [10-11]. This is because

that the QR algorithm applied directly to a full matrix A (with size nxn) leads to

o(n 4 ) multiplications. If we transform first A into an upper Hessenberg form by

a sequence of similarity transformations, it requires 0(n3 ) multiplications. Then ,

the application of QR iterations to the Hessenberg form requires only 0(kn 3 )

operations, where k is the average number of iterations for finding one

eigenvalue.
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The algorithm partitioning method is described as follows. First we design
p(p+l)

a triangular array structure which consists of 2 processing elements (PEs)

where p is the number of PEs on the edge of the triangular array. An upper

Hessenberg matrix is then partitioned into several mxm blocks. Each partitioned

block is assigned to one PE for executing the arithmetic computation. The

interprocessor communication requirements therefore need to be satisfied among

neighboring PEs. Based on this partitioned method, the grain size (mxm) is

determined by the matrix size (nxn) and the number of PEs (p) on the triangular
n

edge. The relation among the three parameters is formulated as m = p.

The parallel QR algorithm is mapped onto the configurable multiprocessor

[5]. There are three computational phases in each QR iteration, and the number of

computational phases in each iteration is fixed to three no matter how the matrix

size increases. More specifically, the communication structures of the parallel QR

algorithm are achievable by the configurable multiprocessor in three different

computational phases. In the first computational phase, an upper triangular

array structure is generated by the configurable multiprocessor. Then, a (p-i) x

2 grid structure follows in the second computational phase. Then, a (p-1) x 2 grid

structure follows in the second computational phase. In the third computational

phase, the configurable multiprocessor reconfigures to a lower triangular array

structure. The dynamic communication structures make the algorithm provide a

very efficient interprocessor communication.

For evaluation the algorithm performance, we first predict it by using a

simplified mathematical analysis and then demonstrate the mathematical

prediction through an algorithm simulation. Based on the mathematical analysis,

we observe that the theoretical speedup has a trend to be an increasing function

of the grain size. For the purpose of demonstration, the parallel QR algorithm is

implemented and run on the simulator (PAPA). The implementation of the

algorithm on PAPA consists of using a fixed number of processing elements (No.

of PEs = 10) for solving the eigenvalue problems of nonsymmetric matrices with

different size (4x4, 8x8, .... 64x64). Table 10.1 shows the experimental speed up and

efficiency as a function of the grain size.

10.4. Parallel Matrix Inversion Algorithm

The problem of inverting matrices is one that frequently occurs in many

scientific and engineering applications, it is a problem that in a nature has a
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Table 10.1. Experimental Speedup and Efficiency vs. Grain Size

(No. of PEs = 10)

.Matrix Size Grain Size Speedup Efficiency
4x4 lX1 2.5 25%
8x8 2x2 3.2 32%

16x 16 4x4 3.7 37%
32x32 8x8 4.3 43%
64x64 16X16 5.1 51%_

considerably high communication complexity comparable to its computation

complexity. Minimization of communication complexity hence has a significant

impact on improving the overall algorithm performance. The basic idea behind

this work [12] is to make use of reconfigurability of the multiprocessor [5] to

distribute computations evenly over processors, and to convey data efficiently to
destination processors without incurring significant communication delay.

Previous approaches in matrix inversion are designed for parallel
processors with fixed communication structures. For example, LU decomposition

on a hexagonal array and cholesky algorithm on a mesh or a cube. The basis of
the matrix inversion algorithm to be presented is a compact computational

scheme that is originally used for the evaluation of determinants. Our approach
is to parallelize and decompose the algorithm into three computational phases.

Each phase uses a distinct communication structure.
The most important feature of our algorithm lies in the use of dynamic

communication structures. During execution the n2 processors are dynamically
connected into three types of topologies: a A -tree, a 2-D mesh bus and a broadcast

tree. A broadcasting tree consists of two levels of processors; the root sits at the
top while the others ars located at the second level. In a A -tree of k levels, the

number of nodes at each level is incremented steadily by two from top to bottom,
and the distance between the root and a terminal node is a constant equal to k. A

2-D mesh bus contains buses in two different dimensions; nodes in the same row

or in the same column are all connected by a bus. In order to achieve the three

topologies in the configurable multiprocessor, we resolve the potential conflicts

among connections through the multistage interconnection networks.

The algorithm performance is analyzed through a simulation experiment.

Of interest are speedup estimation of the algorithm and its sensitivity to various
system parameters. In order to have insight into performance gain due to

107



dynamic communication structures, we conduct experiments for comparing the

proposed algorithm with a parallel algorithm with an equivalent level of

computation parallelism, but with a fixed mesh topology. More specifically, in our

experiment we use execution time and speedup as two basic measures to evaluate

algorithm performance. Before each experiment we have to set two system

parameters: communication cost and reconfiguration cost. The former is an

estimate of the penalty that a process has to pay for sending or receiving a

message. The latter is an estimate of the response time required by the

configurable multiprocessor for adapting its topology.

From the experiments, we observe that the algorithm with dynamic

communication structures outperforms the one with a fixed communication

structure. We conclude that for the matrix inversion algorithm, the use of

dynamic communication structures leads to efficient interprocessor

communication and well-balanced computations.

10.5. Parallel Linear Programming Algorithm

Linear programming algorithm is concerned with problems in which

linear functions are to be optimized subject to some liner constraints. Studies of

the linear programming algorithm indicate that a large amount of time is spent

in searching and broadc-asting a critical data. These two operations are

communication-intensive in nature, and they have a dominant effect on the

overall algorithm performance. Thus it is crucial to minimize the interprocessor

communication overhead. To attain such a minimization, we propose the parallel

linear programming algorithms with two computational phases [13]. The first

phase works on searching a minimum value among a series of data located in

distinct modules. The second phase endeavors to broadcast the minimum value to

other modules.

The target machine is shared-memory, 4 x 4 switching-based Butterfly

Parallel Processor. The core of the Butterfly Parallel Processor is a multistage

interconnection network, called the Butterfly Network, through which processor

nodes access remote memories in a packet switching manner. The efficient

method for mapping the linear programming algorithm is described as follows. A

quadtree communication structure and two procedures are presented on the

Butterfly Parallel Processor [14]. More specifically, the proposed quadtree

communication structure, as shown in Figure 10.5.1, in fact suggests a general
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approach to mapping a class of parallel algorithms with intensive communication

requirements for performing two primitive operations - selecting data from

many different sources and distributing data from a single source. We show that

while performing these two operations through the quadtree structure, the two

procedures incur no communication conflicts. By properly merging messages

and efficiently replicating data, the parallel linear programming algorithm can
accomplish required communications in 0(log4M) parallel steps, where M is the

size of a Butterfly Parallel Processor. Evaluation of the parallel liner

programming algorithm through a mathematical analysis demonstrates that a

satisfactory speedup can be obtained by using the quadtree communication

structure.

Based on the parallel linear programming algorithm, we present an

algorithm extension (15], in which the tree size can be dynamically reduced or

enlarged by increasing or decreasing the number of descendent nodes adjacent to

each parent node. The tree contraction allows us to balance off computations and

communication requirements of algorithms with large computation/

communication ratios. Besides, communication links of a contracted tree

structure still preserve the conflict-free property of the quadtree structure. For

algorithms with small computation/communication ratios, we consider the stretch

of the quadtree structure. Without losing the contention-free property, the

number of descendent nodes can be reduced to two.

The determination of an optimal number of descendent nodes is dependent

on the different computation/communication ratios of various algorithms. By

setting up a mathematical model, we analyze the relationship between the optimal
number of descendent nodes (4) and the computation/communication ratios (TI)

for a specific network size (m). We see that the quadtree communication

structure should be stretched for algorithms with small computation/

communication ratios. On the other hand, for algorithms with large

computation/communication ratios, we need to contract the quadtree structure to

minimize the total algorithm execution time.

10.6. Future Work

We have described two basic approaches to wisely using the

reconfigurability of the multistage interconnection network to reduce

interprocessor communication cost for parallel algorithms. Our research efforts
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have laid down a substantial foundation for future advanced study on the

mapping problem. Our next logical step in studying the mapping problem will be

the use of network reconfigurability for achieving fault-free communication

structures. The main focus is on mapping those useful communication structures

we have found in the presence of faulty system components, including processor

nodes, network links and switches. We are also interested in investigating the

degradation of performance which results from component failures.
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CHAPTER 11
BUTTERFLY PERFORMANCE PREDICTOR

11.1. Introduction

The availability of a variety of commercial multiprocessor computers today

makes it difficult to decide on the optimal machine for any specific parallel

application area. In' addition to the strengths and weaknesses of each candidate

machine, the characteristics of programs in the target application domain must

be taken into account in making this selection. Unfortunately, neither formal

techniques nor software tools are currently available to assist in this decision

process. The Butterfly Performance Predictor development effort described here

addresses the problem of determining whether a particular class of parallel

ccmputer systems is suited to the specific application domains. In particular, the

development of software tools for application dependent performance evaluation

of the BBN ACI Butterfly Parallel Processor is described.

A variety of parallel processors have appeared on the market in this

decade. Most commercially available parallel computer systems can be classified

as bus based systems, multi-stage interconnection network (MIN) based

systems, or hypercube systems. Bus based multiprocessors consist of processors,
memory modules and other devices, connected to each other through a simple

computer bus. Examples of this class of system include the Encore Multimax, the

Sequent Balance and Symmetry series, and the Synapse N+l system, with new
products announced regularly. These systems are typically restricted in size to a

maximum of a few tens of processors due to the performance limitations of

current computer buses. In MIN based multiprocessors, the processors, memory

modules and other devices are connected through a network of stages of

switching elements. The BBN ACI Butterfly system is one commercially available

example of a MIN based multiprocessor. The power of the Butterfly MIN makes

multiprocessor systems with hundreds of processors cost effective. Hypercube

multiprocessors are a relatively new entrant in the parallel processor arena. A

hypercube system consists of 2**n processor-memory modules, with each module

directly connected to n-1 neighbors, forming an n-dimensional cube. Hypercube

systems with up to 1024 processor modules are commercially available from Intel

Corp, NCUBE Corp, and Ametek.
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11.2. Butterfly Performance Predictor Overview

The general operation of the Performance Predictor is illustrated in Figure

11.1. It estimates performance metrics based on two kinds of data: architectural

parameters (detailed information about the parallel machine architecture), and

algorithm parameters (information about algorithms from the application domain

under study). Theoretically, such a performance predictor could be used to study

different parallel processor architectures by merely varying the architectural

parameters. In practice, it is difficult to conceive of a set of parameters powerful

enough to categorize bus-based system, MIN based systems, and hypercube

systems in sufficient detail to allow reasonable accuracy of performance

prediction. A more conservative design goal was employed in this effort; the

architectural parameters were chosen to enable the user to study parallel

machines "similar" to the Butterfly.

Figure 11.2 shows the Performance Predictor in more detail; its main

component is a Butterfly Simulator - a program that simulates program

execution on a Butterfly while accumulating performance measures. To drive the

simulator under conditions representative of the target application domain, two

strategies were considered. In the first strategy, real Butterfly programs are

used. This scheme has obvious drawbacks: it requires the simulator to be

sophisticated enough to process actual Butterfly machine code and also requires

access to programs coded specifically for the Butterfly. A more flexible and user-

friendly strategy is to drive the simulator with synthetically generated

instruction streams that are representative of the target application domain. The

second key component of the Performance Predictor, therefore, is a program

(called the Code Simulator) that generates these instruction streams.

The work described here was conducted in the period June 1987 - June 1988.

11.3 Butterfly Parallel Processor

The Butterfly multiprocessor system is made up of processor nodes and a

Butterfly interconnection network as shown in Figure 11.3. The network is

depicted as a cylinder since both its inputs and outputs are processor nodes,

unlike a conventional "dance-hall" multiprocessor architecture, which would

have processors at one end and memory modules at the other. All of the

distributed memory is globally accessible. Remote memory accesses are conducted

through the network. Each processor node contains a processor (currently a
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Figure 11.1. Butterfly Performance Predictor
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Figure 11.3. The Butterfly Parallel Processor
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Motorola 68020), an arithmetic co-processor (MC 68881), 1-4 Megabytes of

memory, memory management hardware, and an interface to the network, as

illustrated in Figure 11.4.

11.4. Code Simulator

The Performance Predictor, as shown in Figure 11.2, is being designed to

accept two forms of input: actual Butterfly program files (after minor

preprocessing) and synthetically generated program files representative of

algorithms in the application domain of interest. The generation of these

synthetic traces is the duty of the Code Simulator. The purpose of the code

simulator is to generate representative and meaningful MC68020 code segments

that are characteristic of the algorithms of interest. Its operation is based on a set

of input parameters:

1. Granularity: This reflects the size of the individual parallel tasks

comprising the input program. The code generator uses it to decide how

large the files of code it generates should be.

2. Parallelism: This reflects the number of parallel tasks involved; the code

generator uses this parameter to fix the number of MC68020 code files to be

created.

3. Computation/Communication Ratio: This reflects the extend to which

the various tasks comprising the problem communicate. It is used by the

code simulator to determine the average number of instructions before a

remote memory reference is made.

4. Number of Communication Partners: This reflects the communication

structure of an algorithm. It is the number of sub-tasks with which a

given sub-task is in communication.
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Figure 11.4. A Butterfly Processor-Memory Node
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The code simulator is driven by tables of static and dynamic statistics of

high level language program contents. These tables were compiled based on a

literature survey of instruction execution, instruction transition and operand

addressing mode frequencies [Alexander 75, Brookes 82, DePrycker 82. Ditzel 80,

Elshoff 76a, Elshoff 76b, Foster 71, Knuth 71, Tanenbaum 78, Wiecek 82]. Since no

statistics are available relating directly to the MC68020 instruction set, a set of

tables was developed for the MC68020 based on equivalent features reported on for

other systems.

The various tables used to drive the code simulator are summarized below:

1. Instruction Execution Frequency Table: The information obtained

from literature accounted for 64% of instructions executed and included the

twenty most frequent instructions. The actual numbers are summarized

below. MOVE was reported as the most frequently executed instruction,

followed by CMP. The classification of the twenty most frequent

instructions executed is not surprising in the light of their function: 61%

are integer arithmetic and logical, 25% are related to control and 7% are

procedure calls. Within the integer arithmetic and logical class, 59% are

moves, 26% are compares, 8% are arithmetic operations, and 7% are

converts. Mnemonics for which information was not available in the

literature were dealt with by assigning values to them to add up to the

remaining 36%. This was done based on information about the percent

distributions of arithmetic and relational operators.

2. Addressing Mode Frequencies Table: The most frequent addressing

modes used in typical programs have also been studied in the literature.

They are register (39.9%), byte displacement (14.8%) and indexing mode

(7.8%). Instructions having two operands with the form (source

destination) accounted for 47.2% of all instructions.

3. Branch Displacement Table: Of the instructions executed during

typical program runs, 34.7% were branch type instructions. Information

on branch displacement frequencies of bit, conditionals and loop branches

was used in constructing a table of branch displacements.
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4. Basic Block Table: It has been observed that on the average a small

number of instructions (3-5) are executed before a branch was taken and

another instruction sequence path started. This was used to define a h

block: a sequence of instructions starting with a label and terminating in a

branch. A basic block table was then constructed It contained basic block

sizes with their expected frequencies of occurrence. The weighted mean of

basic block sizes is 3.9.

The generation of MC68020 code files was done using these tables. The

tables were summarized in a set of data flies containing information on

instruction execution frequencies, addressing mode frequencies, branch

displacements and basic block sizes.

Based on the granularity parameter, the number of instructions to be

generated in a particular file is decided. The file was generated as a series of basic

blocks. Labels were calculated using the UNIX random number generator

function drand480 and the basic block table, and stored in an array. The

instructions within a basic block were generated randomly based on the

distributions summarized in the instruction execution and addressing mode tables.

Separate seeds were used for the function drand 48() in deciding the mnemonics

and the addressing modes.

In order for the instructions generated to conform with the statistics

contained in these tables, checkpoints were introduced: at intervals of 0.1 *

number of blocks, the current instruction mix is evaluated. If necessary, the

table contents were modified temporarily. This adaptive procedure improves the

quality of code generated. A count was maintained for each mnemonic and

addressing mode as it was generated. At each checkpoint, the frequency of

occurrences of the addressing modes and the opcodes was compared with their

respective counts and weighted with a multiplier. The mean square error

calculated at the end of each file showed close conformance with the statistics in

the tables.

11.5. Butterfly Simulator

The Butterfly Simulator contains two components: a network simulator

and a node simulator. The network simulator maintains the status of the

Butterfly network while producing timing estimates of how long it takes to

traverse the network. The node simulator accepts Butterfly programs as input
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and estimates their execution time. It uses the network simulator for timing

information related to the Butterfly MIN, and uses a set of files of architectural

information to do its own timing estimation. These files contain the
"architectural parameters" mentioned earlier and are referred to as the
"processor files".

The program execution timing estimates are made at the instruction level.

The execution of the program is traced instruction by instruction, and the time

taken for each instruction is computed based on timing information obtained

from Motorola data books for the MC68020 and the MC68881 and accumulated in the

Performance Predictor's processor files: these files contain, for each instruction-

addressing mode pair, the time that it takes to execute the instruction on the

processor. Figure 11.5 shows sample processor files.

This approach has one serious drawback - it can not take data-dependent

(conditional) branches into account in producing its timing estimates. This would

have been possible if the Butterfly simulator simulated the actual execution of the

input Butterfly programs, which would be slow, costly, and difficult to implement.

As an alternative, a probabilistic approach was taken, using statistics from the

literature on research into branch prediction [DeRosa 87. Lee 84. McFarling 86.

Smith 81] decide whether or not to take conditional branches. These probabilities

were user supplied and provide a degree of flexibility to the performance

prediction mechanism.

11.6. Conclusion

The code simulator and the Butterfly Simulator have been developed in C on

a SUN 3/50 workstation running 4.2 BSD UNIX. Used together, they provide the

user with the tools to study the expected performance of classes of algorithms

implemented for parallel execution on a Butterfly Parallel Processor.
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Processor File Example:

16% clock rate in nanoseconds
** % section delimiter
ari% section with mnemonics for operand modes
ard
arid

move % section with two operand instructions
add
sub

neg % section with one operand instruction
load

fop 4 % section with no operand instruction and times

1ti

bcc 10 15 % section with conditional branch instructions and times

bra 10 % section with unconditional branch instructions and times

jsr 10 % section with subroutine call instructions and times

rtr 5 % section with subrouting return instructions and times

frk 20 % section with fork instruction(s) and time(s)
**

snd 8 % section with send instruction(s) and time(s)

rcv 3 % section with receive instruction(s) and times

BOF

Figure 11.5 Sample Processor File

124



Instruction Time File Example:

move % instruction mnemonic
3,4,5;6,7,8; . .; 7,8,9;

3,4,5;6,7,8; ; 7,8,9;
add
3,4,5;2,4,8; ;7,8,9;

23,24,25;36,37,38; .. ; 57,58,59;

**% section for one operand instructions
n eg
3,4,5;

5,66,8;

Input Program File Example:

loop: move ani, ard
add arid, ari
bcc loop
bsr inc
jnip end
inc: add ard, arid
ritzr
end: nop
EOP

Figrure 11.5 (Cont'd) Sample Data Files
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